荷電交換反応による二重ベータ崩壊核行列要素の研究

矢向謙太郎 (東大CNS)

「宇宙の歴史をひもとく地下素粒子原子核研究」研究会
2014年8月23日
0v double beta decay
- Majorana ν is emitted and absorbed.
- Nucleus is kicked by 50~100 MeV/c twice.

NME is important!
- analysis ... absolute mass / mass limit of ν
- research planning ... which nucleus is the best candidate?
\[M^{(0\nu)}_{GT} = \sum_{J^\pi} M^{(0\nu)}_{GT}(J^\pi) \]

\[M^{(0\nu)}_{GT}(J^\pi) = \sum_{n\lambda} \langle 0^+_f || \sum_j [\sigma_j F_{\lambda}(r_j)] t_j^- || J^\pi n \rangle \]
\[\times \langle J^\pi n || \sum_j [\sigma_j F_{\lambda}(r_j)] t_j^- || 0^+_i \rangle \]

Neutrino potential

- large uncertainty in GT(1+) component
- largest contribution from dipole (2-)

Intermediate states:
- g.s.
- other states of various \(J^\pi \).

Double Gamow-Teller
Double Spin-Dipole

\((A,Z) \) \(\beta^+ \beta^- \) \((A,Z+1) \)

\((A,Z+2) \)

\(J^\pi \) of intermediate state

\[
\begin{array}{c}
g_{pp} = 0.89 \\
g_{pp} = 0.96 \\
g_{pp} = 1.00 \\
g_{pp} = 1.05
\end{array}
\]
Several Methods...

- Ab-initio (more correlations)
- Coupled cluster Calculation
- RPA + (n-n/p-p pair)
- No-core shell model
- Shell model
- Renormalization of transition operator
 - Holt and Engel, arXiv:1304.4202
 - Engel and Hagen, PRC79,064317(2009)
- (Light nuclei)
- Non-perturbative Higher order corr.
 - G. Hagen et al. (ORNL+Oslo...)
- Large-basis calculations

... the first convergence may appear for the 48Ca case
Correlations or model spaces?

For example, comparing SM w/ QRPA

- Each has uncertainty of ~ 30%
- SM predictions … 20-50% smaller than QRPA.
- Concerns…

SM : limited model space
QRPA : sufficient correlation?

Menendez, PRL100(2008)052503

FIG. 3 (color online). The neutrinoless double beta decay NME’s; comparison of ISM and QRPA calculations. Tu07; QRPA results from Ref. [20], Jy07; QRPA results from Ref. [21]. ISM $s \leq 4$ and ISM; present work. The ISM results have uncertainties in the 20% range (see text).

…Guides from Experiments are necessary.
Experimental attempts to guide the calculation

1. Static properties: particle occupation / vacancy
2. Single transitions
 - Single beta decay
 - GT transitions
 - Other transitions
3. Double transitions
 - $2
\nu\beta\beta$ decay ($M^{2\nu}$)
 - Double GT resonance?
GT strength distributions... comparison with shell model

Shell model ...
with quenched operator
Spectra agree qualitatively up to ...
(p,n) : \(E_x = 15 \text{ MeV} \)
(n,p) : \(8 \text{ MeV} \)
Strengths beyond ...
... underestimated.

Necessity of larger model space? Correlations?, …
Constraint of double transition (in addition to $M^{2\nu}$)
... Double GT resonance

Sum rule:

$$\Sigma B(\text{DoubleGT}) = 6(N-Z)(N-Z-1)$$

= 336 for ^{48}Ca

Only 0.02 is going to g.s. of ^{48}Ti
10 days of experiment was fully approved at RCNP BPAC, Mar2014

Search for
Double Gamow-Teller Giant Resonances in 48Ti
via
the Heavy-Ion Double Charge Exchange
48Ca(12C, 12Be(0^+_2)) Reaction

Motonobu Takaki (CNS, University of Tokyo)
&
Tomohiro Uesaka (RIKEN Nishina Center)
New Idea: \((^{12}\text{C},^{12}\text{Be}(0^+_{2}))\) Reaction

\(^{12}\text{C}(\text{gnd})\rightarrow^{12}\text{Be}(0^+_{2})\) transition is strong.

Delayed-\(\gamma\) tagging enables clear event identification.

- \(\tau(^{12}\text{Be}(0^+_{2})) = 330\) ns \(\gg\) TOF \~ 150 ns
- \(~70\%\) of the \(^{12}\text{Be}(0^+_{2})\) state can survive until reaching the GR F.P.

... Effective in Double GT excitation.

\((^{12}\text{C},^{12}\text{Be})\) reaction = Double GT probe

Delayed-\(\gamma\) tagging enables clear event identification.

Exp by Takaki

Exp by Takaki

\(0p_{1/2}\)

\(0p_{3/2}\)

\(0s_{1/2}\)

(proton)

(neutron)

\((^{12}\text{C},^{12}\text{Be})\) reaction = Double GT probe

... Effective in Double GT excitation.

Delaye\(\gamma\) tagging enables clear event identification.

- \(\tau(^{12}\text{Be}(0^+_{2})) = 330\) ns \(\gg\) TOF \~ 150 ns
- \(~70\%\) of the \(^{12}\text{Be}(0^+_{2})\) state can survive until reaching the GR F.P.

\(\text{two 511 keV }\gamma\)-ray in back to back
Exp by Takaki

Experimental setup

Target

- $^{48}\text{Ca}:10 \text{ mg/cm}^2$
- $\text{H}_2^{18}\text{O}:20 \text{ mg/cm}^2$

Plastic + 16 NaI(Tl) → identify back-to-back 511 keV photon

^{12}Be beam (100 MeV/u, 30 pnA)
Test Experiment

18O(12C,12Beγ)18Ne(gnd)

Decay time constant: 395^{+173}_{-92} ns
\Leftrightarrow 331 ns in literature

BG due to particle mis-identification

with γ-tag $\times 10$

w/o γ-tag

Counts (A.U.)

Excitation Energy

Nal(Tl)
17kHz

511keV

12Be

511keV
<table>
<thead>
<tr>
<th>item</th>
<th>Exp</th>
<th>Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>static</td>
<td>○</td>
<td>△</td>
</tr>
<tr>
<td>static Occupation No.</td>
<td>O</td>
<td>△</td>
</tr>
<tr>
<td>single transition</td>
<td>◎/ O</td>
<td>○</td>
</tr>
<tr>
<td>single transition Beta decay</td>
<td>◎</td>
<td>○</td>
</tr>
<tr>
<td>B(GT) dist. at Low Ex</td>
<td>◎</td>
<td>△</td>
</tr>
<tr>
<td>High Ex</td>
<td>○</td>
<td>×</td>
</tr>
<tr>
<td>Dipole: 0-, 1-, 2-</td>
<td>△/ O</td>
<td>△</td>
</tr>
<tr>
<td>double trans</td>
<td>M^{2v}</td>
<td>○/拘束条件</td>
</tr>
<tr>
<td>Double GT</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Double SD</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>

Occupation No. を良く記述するよう理論計算のインプットを調整
-> QRPA と Shell model との M^{2v} 予言値 がほぼ一致

... 新たな実験データは計算信頼度の向上に役立っている。
Summary

- \(0^\nu \) nuclear matrix element \(M^{0\nu} \) is necessary to deduce the majorana \(\nu \) mass from the \(0^\nu \) half life.
- Prediction of \(M^{0\nu} \) depends on the models of nuclear structure → Guiding data are needed.

- \(B(GT) \) distributions in the \(^{48}\text{Ca}(p,n)^{48}\text{Sc} / ^{48}\text{Ti}(n,p)^{48}\text{Sc} \)
 - \(B(GT; \beta^+) \) is underestimated
 ... correlations/model space is not enough.
- Search for double GT resonance in \(^{48}\text{Ca}({}^{12}\text{C},{}^{12}\text{Be}) \) reaction ...
 ... main component of the double GT transition is studied.