# 電磁波で探る超新星の性質

/ERO

### 前田啓一 京都大学 宇宙物理学教室 第2回超新星ニュートリノ研究会, 2016/1/6-7

ペテルギウス爆発

その時 地球では

### Let's Go Supernova: A putative SN at ~200pc

#### • Pre-SN neutrinos.



 Identifying the star to explode before a few days (will not be many optical counterparts, relatively easy).

⇒A wealth of information on a **progenitor** and explosion.

# Let's Go Supernova: at the Gal. Center (~8 kpc)





 Identifying the moment of an SN before EM signals (will be many stars + huge absorption ⇒ wide-field NIR/X-ray follow-up better than optical?).

⇒A wealth of information on a progenitor and **explosion**.

### **Evolution of SNe and observational signatures**



### **Observational Characteristics of Supernovae**

- > 1000 discoveries a year (dep. on surveys).
  - -Only a part (nearby) observed in detail.
- Distance > ~ 10 Mpc (extragalactic).



-Point sources (except for a few by HST/AO/VLBI).

- Typical maximum mag. V > ~ 16 mag (roughly).
- Most of obs. = Optical.
  - Imaging + spectra (time-dep.)
     Interpretation

Supernova Physics (e.g., exp. mech.)



# **Supernova Classification**



la

Thermonuclear exp. of a white dwarf (WD) II/Ib/IC Core-Collapse (CC) of a massive star

> H-rich He

> > C+O

Si

Fe

# **SN Classification**

#### IIn Core-Collapse (CC) of a massive star





#### Emission lines of hydrogen

⇒ Interaction-powered (Crash between the SN ejecta and CSM, i.e., pre-SN wind/mass loss) The nature of SN material is largely hidden.

### End of massive star's life (observationally)



(Core-collapse only: Li+ 2011)

#### Mass loss (wind or binary):

IIn: explosions of what? Huge mass loss: ??? Ib/Ic: explosions of He/C+O stars (Wolf-Rayet, WR?): Small IIb: A small amount of H-envelope (< 1  $M_{\odot}$ ): Medium? IIp/IIL: explosions of RSGs (Red SuperGiants): Large

### Binary Important, but not well-known

binary



More than half of massive stars experience strong binary interaction during their evolution.

# **Progenitor – CSM - Explosion**

#### - Neutrinos

Mass loss by stellar wind Instabilities Binary



Mass Metallicity Rotation Binary Ne

**Neutrinos** 

Inner debris of the Supernova 1987A (SN 1987A) ring





Diversity within the same mechanism. Even different mechanisms.



# **Observations of supernova progenitors (and progenitor systems)**

# Progenitors



### Supernovae

Red Supergiant

Blue Supergiant

LBV (η Car)

Late W-R (WN)

Early W-R (WC/WO)

Massive **Binaries** 



























Type II-P

SN 1987A (faint, slow)

Type IIn (dense CSM)

Type IIL/IIb (little H)

> Type Ib (H, He)

Type Ic (He)

# Typically a few years before the SN Progenitor search in past images

5.5

4.5

3.5

5.0 5.0

4.0-4.0

.og (⊾/L<sub>⊙</sub>'

20

12

8 8MG

 $M_{ms} = 20 M_{\odot}$ 

Smartt 2009 (Review) Log (T<sub>eff</sub>)

12M<sub>☉</sub>

SN 2005cs Hubble Space Telescope (HST) (Wang & Filippenko)

Before Supernova Near Infrared January 21, 2005

### **Progenitor Detection**

< ~ 30 Mpc with HST (Hubble).</p>
Good for SNe IIp (Giant, bright in optical)
Bad for SNe Ib/Ic (Wolf –Rayet, bright in UV, not in opt.)
The best cases = The progenitor "candidates" gone after the SN.

# **SN IIp Progenitors: Mass range**



Assuming Salpeter IMF,

 $M_{min} \sim 8.5 M_{\odot} (\pm 1.5) \rightarrow ECAP-SN IIp, or no ECAP-SNe?$  $M_{max} \sim 16.5_{\odot} (\pm 1.5) \rightarrow RSG problem (There are RSG > M_{max})$ ⇒Horiuchi-san?

# WR progenitor for SNe Ib/c? (no detection)



More should have been detected if the progenitors are known WR populations.

 $\Rightarrow$  Something unclarified is happening within << 10<sup>6</sup> yrs ? (a challenge to stellar evolution theory)

# A candidate progenitor of SNe lb/c

#### The first detection of a candidate in 2013: iPTF13bvn

Massive Wolf-Rayet? ( $M_{ms} > 20M_{\odot}$ )

SN Light curve indicates a compact progenitor, but less massive (Kuncarayakti, KM+ 2014). Controversy.

Further HST observations in last August, now analyzing (Folatelli, ..., KM+ in prep.)



### Progenitor search for SNe IIb (no RSG, no WR!)



Disappearance (Folatelli, ..., KM++ 2015)

BSG=Blue Supergiant YSG=Yellow Supergiant

### YSG Progenitors for 3 SNe IIb (out of 4)



"Classical" YSG: Expanding rapidly towards red supergiants after leaving the main sequence, spending only a few thousand years in that phase.



Progenitor = YSG Van Dyk+ 2013

Not considered as a "SN progenitor", but one third of IIb progenitors! Indication: Binary. pre-explosion

2011 WEC3/E336

# Another one: SN IIb 2008ax

Pre-SN point source Crockett+ (2008)

Analyses of late-time HST images by us show that it consists of multiple stars. Folatelli, ..., KM+ (2015)

Now, the SN has faded. A fraction of light gone. ⇒ Progenitor.













2013









# **Progenitor of 2008ax**

#### SN had faded below the "progenitor" flux ⇒ Real progenitor was a Bluesupergiant (BSG ~ SN 1987A!).





### **Direct Detection of Companion (Candidate)**



# Folatelli, ..., KM+ 2014, ApJ, 793, L22 Direct Detection of Companion (Candidate)



# Caveat: very diverse, may come from multiple populations SN IIn Progenitors and Environments





~10<sup>6</sup>L<sub> $\odot$ </sub>: Luminous Blue Variable (?) > 50M<sub> $\odot$ </sub> SN 2005gl Gal-Yam & Leonard 2009

A challenge: LBV (RSG⇒WR)

is **not** regarded as an SN progenitor in theory (again!).

Low-metallicity: ~  $0.3Z_{\odot}$ Life-time: ~ 3-5 Myr SN 2010jl Smith+ 2011



# Pre-burst activities of some SN (?) IIn

(At least) Two "SNe IIn" showing **pre-burst activities**. **SN or not (whole star disrupted or not)**? SN 2009ip ("SN" in 2011) now below the pre-burst luminosity in 2015 (Thoene, ..., KM+, 2015, ATEL #8417)。

# Another example: Type "Ibn"



SN 2006jc resembles type IIn (emission line dominated) but He (not H): Thus termed Ibn ⇒He-rich mass-loss, 2 yrs before the SN.

### Summary for the direct progenitor obs.

- SNe IIp: RSGs as expected, but is it the whole story? (e.g., RSG problem)
- SNe Ib/Ic: Seems to be compact, but not like a WR star we know. Binary? Final evolution?
- SNe IIb: Huge diversity, YSG, BSG... Binary?
- SNe IIn: Really LBV? Evolutionary path totally unclear.
- "SNe" IIn/Ibn: Pre-SN activities... what?

Pre-SN progenitor within a few days to explode (pre-SN v!) will revolutionize our understanding of the final evolution toward SNe (currently ~ year or so before the SN).

# **Observations of supernovae**

# After the Fe-core collapse (> $10M_{\odot}$ )



### **Explosive Nucleosynthesis at the shock**



The shock penetrates into the outer layers. The high temperature there induces explosive nucleosynthesis above the Fe core.

Dynamics  $[\rho(r,t), T(r,t)]$  $\Rightarrow$  Nuclear reactions  $[X_i(r, t)]$ 



# From the collapse to shock breakout

- Fe-core Collapse ⇒ Shock reaching to the surface.
- The v burst ⇒ Electromagnetic radiation.



• V ~ (E/M)<sup>1/2</sup>.

• Δt ~ R/V

~ 100 sec

 $(R/R_{\odot})(E/10^{51}erg)^{-1/2} (M/M_{\odot})^{1/2}$ 

- RSG (IIp):  $1000R_{\odot}$ ,  $10M_{\odot}$
- $\Rightarrow$  a few hours.
- WR (lb/c?):  $1R_{\odot}$ ,  $1-10M_{\odot}$  $\Rightarrow$  a few 100 sec.

### Temperature behind the shock (above Fe-core)



KM, Tominaga, 2009



# Supernova Nucleosynthesis (in 1D)



Fe-peak IME (Si, Ca…)

Mass: Larger IME (for larger mass) Energy: Larger Fe (for larger E) + Fe-peaks (e.g., Zn, Ti) + non 1D effect (mixing, global asymmetry)

### Supernova Nucleosynthesis (asymmetric)



# Supernova Nucleosynthesis (3D v-driven)



More and more sophisticated models being available (Takiwaki-san, Horiuchi-san's talks).

# **Shock Breakout**



Original idea: Arnett 1977 Chevalier 1978
#### **Shock Breakout: detected cases**



SN Ib 2008D X, ~ a few 100 sec  $\Rightarrow$  compact, but >> WR? SN IIp SNLS-04D2dc UV, ~ 6 hrs  $\Rightarrow$  RSG.

ĠALEX NUV

53066

near

53064

Post shock



b

a

~

2008 January

# Shock Breakout (in optical)

Numerical (radiation-hyd.): Tominaga+ 2011



Gonzalez-Gaitan, Tominaga+ 2015 Compilation of nearby SNe IIp



No solid detection in optical so far. Ongoing surveys (incl. Kiso, Subaru/HSC: Tominaga+)

| "Post" Shock Breakout (Adiabatic Cooling)            |                                                                                                 |                                          |                                                                        |  |  |  |  |  |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------|--|--|--|--|--|
| $\dot{E} + P\dot{V} = \epsilon - \frac{1}{2}$        | $\frac{\partial L}{\partial M} \sim 0$                                                          | PdV                                      | Expansion<br>(dV/dt)                                                   |  |  |  |  |  |
| Temperature                                          | Luminosity                                                                                      | WORK                                     |                                                                        |  |  |  |  |  |
| $E, P \propto T^4$                                   | $\partial L$ L                                                                                  | E                                        | E, P                                                                   |  |  |  |  |  |
| $\dot{T}$ $\dot{R}$ $v$                              | $\frac{\partial M}{\partial M} \sim \frac{\partial M}{M} \sim \frac{\partial M}{\partial \tau}$ | diff                                     |                                                                        |  |  |  |  |  |
| $\overline{T} \sim -\overline{R} \sim -\overline{R}$ | $\tau \dots \sim \kappa M$                                                                      |                                          |                                                                        |  |  |  |  |  |
| $T \propto R^{-1} \propto t^{-1}$                    | $\beta cR$                                                                                      |                                          |                                                                        |  |  |  |  |  |
|                                                      | $I \sim \frac{1}{2} \frac{E}{R} \frac{\beta c}{R}$                                              | $f_{\rho}-f(t)$                          | Diffusion                                                              |  |  |  |  |  |
|                                                      | $2M^{\prime\prime}\kappa$                                                                       | <b>First phase</b>                       | ):                                                                     |  |  |  |  |  |
|                                                      |                                                                                                 | Fully Optic<br>Cooling by<br>Photon diff | Fully Optically thick<br>Cooling by Adiabatic loss<br>Photon diffusion |  |  |  |  |  |

#### "Post" shock breakout ⇒ Progenitor radius

#### SNe IIp (RSG)

#### SN IIb 2011dh (YSG)



Largely consistent w/ Progenitor radius from the "direct" detection.



Largely consistent w/ Progenitor radius from the "direct" detection.

#### **Further Energy Budget for EM radiation**

Homologously Expanding Ejecta Initial thermal energy Important for large R (less adi. cooling)

> Shock wave (Crash) Kinetic⇒thermal Important for dense CSM

Radioactivities Non-thermal⇒Thermal Important for more nucleosynthesis (e.g., large E)

# SNe IIp: Recombination (initial thermal E)

- Hydrogen-rich envelope (RSG).
- $\kappa = \sigma_T / m_H \sim 0.4 \text{ cm}^2 \text{ g}^{-1} \text{ if } \text{H}^+$ , but ~ 0 if H<sup>0</sup>.
- Keep/Trap the thermal energy by Thomson scat.



T~ const ~ 6,000K R ~ const  $L\sim 4\pi R^2 T^4 \sim const$ Color (T) ~ const Bersten+ 2011

#### Dessart+ 2013



#### Bose+ 2013

| Name                                | $t_0$ (245 0000+)          | $\Delta t_{\rm p}$ (d)             | t <sub>p</sub><br>(d)                               | $M_V^p$ (mag)                                              | $v_{\rm p}$ $({\rm kms^{-1}})$                     | $\begin{array}{c} E_0 \\ (\times \ 10^{50} \ \mathrm{erg}) \end{array}$ | <i>M</i> <sub>ej</sub><br>(M <sub>☉</sub> ) | $\begin{array}{c} R_0 \\ (R_{\bigodot}) \end{array}$ |
|-------------------------------------|----------------------------|------------------------------------|-----------------------------------------------------|------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------|
| SN 1999em<br>SN 1999gi<br>SN 2004et | 1475.6<br>1522.3<br>3270.5 | $92 \pm 8$<br>97 \pm 8<br>87 \pm 8 | $55 \pm 4$<br>$58 \pm 4$<br>$63 \pm 4$              | $-16.69 \pm 0.01$<br>$-16.26 \pm 0.02$<br>$17.01 \pm 0.03$ | $3512 \pm 122$<br>$2746 \pm 217$<br>$3630 \pm 142$ | $7 \pm 2$<br>$4 \pm 1$<br>$6 \pm 2$                                     | $11 \pm 3$<br>$10 \pm 3$<br>$0 \pm 2$       | $399 \pm 54$<br>$421 \pm 99$<br>$501 \pm 00$         |
| SN 2004et<br>SN 2012aw              | 6002.6                     | $87 \pm 8$<br>96 ± 11              | $\begin{array}{c} 65 \pm 4 \\ 57 \pm 6 \end{array}$ | $-16.67 \pm 0.03$                                          | $3630 \pm 142$<br>$3631 \pm 200$                   | $0 \pm 2$<br>$9 \pm 3$                                                  | $9 \pm 2$<br>$14 \pm 5$                     | $391 \pm 90$<br>$337 \pm 67$                         |

Not always consistent w/ detected progenitor mass? E-M(<sup>56</sup>Ni) related? (calibration w/ v-burst detection!).

# Radioactivity

| Isotopes         | W7       | C-DEF    | C-DDT    | O-DDT    |
|------------------|----------|----------|----------|----------|
| <sup>22</sup> Na | 2.01E-08 | 1.01E-07 | 1.46E-07 | 5.40E-08 |
| <sup>26</sup> Al | 5.18E-07 | 1.69E-06 | 2.47E-06 | 8.77E-07 |
| <sup>36</sup> Cl | 2.08E-06 | 4.74E-07 | 5.22E-06 | 2.06E-06 |
| <sup>39</sup> Ar | 6.79E-09 | 1.53E-09 | 1.69E-08 | 7.75E-09 |
| <sup>40</sup> K  | 4.34E-08 | 7.17E-09 | 7.75E-08 | 3.90E-08 |
| <sup>41</sup> Ca | 4.35E-06 | 1.10E-06 | 1.18E-05 | 8.85E-06 |
| <sup>44</sup> Ti | 8.37E-06 | 1.93E-06 | 3.21E-06 | 1.59E-05 |
| <sup>48</sup> V  | 4.32E-08 | 1.68E-08 | 9.76E-08 | 1.09E-07 |
| <sup>49</sup> V  | 1.05E-07 | 1.00E-07 | 3.07E-07 | 2.69E-07 |
| <sup>53</sup> Mn | 1.64E-04 | 4.93E-04 | 3.38E-04 | 2.25E-04 |
| <sup>55</sup> Fe | 1.79E-03 | 4.17E-03 | 2.89E-03 | 1.93E-03 |
| <sup>60</sup> Fe | 3.33E-09 | 9.86E-15 | 2.29E-13 | 6.93E-12 |
| <sup>55</sup> Co | 4.89E-03 | 3.18E-03 | 3.07E-03 | 5.40E-03 |
| <sup>56</sup> Co | 1.21E-04 | 1.18E-04 | 1.06E-04 | 1.04E-04 |
| <sup>57</sup> Co | 9.52E-04 | 1.94E-03 | 1.40E-03 | 9.37E-04 |
| <sup>60</sup> Co | 4.32E-08 | 5.30E-10 | 1.19E-09 | 3.30E-09 |
| <sup>56</sup> Ni | 6.40E-01 | 2.45E-01 | 2.46E-01 | 5.40E-01 |
| <sup>57</sup> Ni | 2.46E-02 | 1.06E-02 | 1.09E-02 | 1.71E-02 |
| <sup>59</sup> Ni | 4.66E-04 | 7.24E-04 | 5.78E-04 | 4.22E-04 |
| <sup>63</sup> Ni | 4.82E-08 | 4.28E-11 | 1.85E-10 | 1.22E-09 |

←Ia (Delayed-Detonation of Chandrasekhar WD) KM+ 2010

Active works by several groups (e.g., Umeda+) State-of-art models to come (Takiwaki/Horiuchi-san's talk?)

↓Core-collapse KM+ 2010

|                  |            | Models   |          |          |          |          |          |          |          |          |          |          |
|------------------|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Species          | 40A        | 40B      | 40C      | 40D      | 40SHa    | 40SHb    | 40SLa    | 40SLb    | 25A      | 25B      | 25Sa     | 25Sb     |
| <sup>26</sup> Al | 3.39E-05   | 3.10E-05 | 5.45E-05 | 1.40E-05 | 5.70E-05 | 5.52E-05 | 5.36E-05 | 5.35E-05 | 1.10E-02 | 1.23E-02 | 1.22E-02 | 1.22E-02 |
| <sup>41</sup> Ca | 5.30E-06   | 4.05E-06 | 1.50E-05 | 9.05E-07 | 8.65E-06 | 7.40E-06 | 2.27E-05 | 2.24E-05 | 1.95E-06 | 1.41E-06 | 2.06E-06 | 2.06E-06 |
| <sup>44</sup> Ti | 1.64E-04   | 1.50E-05 | 4.26E-04 | 7.52E-08 | 1.18E-03 | 6.67E-06 | 6.52E-06 | 8.72E-06 | 1.31E-04 | 3.66E-05 | 2.14E-04 | 5.73E-05 |
| <sup>57</sup> Ni | 1.0/E = 01 | 8.11E-02 | 2.40E-01 | 6.28E-08 | 5.44E-01 | 9.01E-02 | 4.38E-01 | 9.07E-01 | 7.81E-02 | 1.51E-01 | 1.64E-01 | 9.0/E-02 |
|                  | 3.25E = 03 | 1.45E-03 | 7.68E-03 | 6.90E-08 | 1.81E-02 | 1.39E-03 | 1.18E-03 | 2.16E-03 | 2.12E-03 | 2.65E-03 | 4.18E-03 | 2.55E-03 |

# <sup>56</sup>Ni→Co→Fe

- ~ 0.6  $M_{\odot}$  in each SN Ia.
- $\sim 0.1 \ M_{\odot}$  in each CC-SNe.
- ${}^{56}Ni \rightarrow {}^{56}Co \rightarrow {}^{56}Fe.$ ~1 week ~100 days

$$L_{\text{peak}} \approx 7.8 \times 10^{43} M_{56\text{Ni},\odot} \exp\left(\frac{-t_{\text{peak}}}{8.8 \text{ days}}\right) \text{ erg s}^{-1}$$

$$\begin{split} L_{\text{tail}} &\approx 1.3 \times 10^{43} \, \text{erg s}^{-1} M_{56\text{Ni},\odot} \\ &\times (\tau_{\gamma} + 0.035 \, f_{\text{e+}}) \exp\left(\frac{-t_{\text{tail}}}{113.5 \text{ days}}\right) \end{split}$$



#### Decay Gamma-ray (Nuclear Levels ~ MeV)

 $\sigma_{ ext{PE}}$ 

 $\sigma_{\rm PP}$ 

 $\sigma_{\rm Comp}$ 



# **Radioactivity: SN 1987A**

- M(<sup>56</sup>Ni) ~ 0.07M<sub>•</sub>
- M(<sup>57</sup>Ni)/M(<sup>56</sup>Ni) ~ 1.5 [X(<sup>57</sup>Fe)/X(<sup>56</sup>Fe)]<sub>•</sub>
- Hachisu+ 1992
- M(<sup>44</sup>Ti)/M(<sup>56</sup>Ni) < ~ 2.9 [X(<sup>44</sup>Ca)/X(<sup>56</sup>Fe)].



New insights: e.g., need for R-T mixing (pure 1D models too opaque).



#### Another example: SN Ia 2014J



#### SN la 2014J @M82, 3.8Mpc

@ 20 days (INTEGRAL):
Diehl, ..., KM+ et al., 2014, Science
@ 50 – 100 days (INTEGRAL):
Churazov et al., 2014, Nature
@ 75 days (Suzaku):
Terada, KM+, submitted

# $\begin{array}{l} Astro-H\\ Gamma from a next Galactic SN simulation\\ (for la, though)\\ \end{array}$



5 Mpc

25 Mpc



# Diffusion of radioactive-powered optical radiation (for SNe Ib/c)



Spectra @ ~ 2 weeks

#### Light Curve @ 1st month



# **Global properties**

Light curve + spectral modeling ⇒Progenitor mass

Explosion energy

Luminosity ⇒M(<sup>56</sup>Ni)

Diversities. A good fraction from a binary path? E-M(<sup>56</sup>Ni)-M related? (calibration w/ v-burst detection!).



# SN optical emission: ~ a year



Optically thin.  $-\rho \propto t^{-3}$ 

- Innermost region.
- Elements synthesized at the explosion.
  - SNe Ia  $\rightarrow$  Fe
  - CC-SNe  $\rightarrow$  Fe, Ca, O.

cf: 8m-Subaru obs. for the inner composition. KM+ 2007ab, 2009, ..., ApJ Kawabata, KM+ 2010, Nature

# Kinematics (late-time spec.)

#### Abunance+Kinematics→explosion





A powerful way to probe explosion from EM radiation.

Takiwaki+ 2014



# Core-collapse SNe are aspherical KM, Kawabata+ 2008←Subaru/FOCAS

# **Kinematics (late-time spec.)**



# Summary for the SN observation.

- Shock breakout, post-SB ⇔ progenitor radius: qualitatively consistent with progenitor detection (?), but discrepancy especially for SNe Ib/c.
- "Peak" phase ⇔ mass, energetics, <sup>56</sup>Ni: Relations between these quantities. Explosion Mechanism?
- "Late" phase ⇔ kinematics, nucleosynthesis @ explosion: Strong probe for explosion from EM radiation.
- Little information on the SN nature for SNe IIn.
- Radioactive decay: Easy to get for a Galactic SN.

Connecting v burst to EM signals will be key in understanding the explosion mechanism (will give an important calibrations for all the EM method!). Observations of supernova on-site environment/Cicumstellar matter (= mass loss in the last decades to centuries)

#### **Further Energy Budget for EM radiation**

Homologously Expanding Ejecta Initial thermal energy Important for large R (less adi. cooling)

> Shock wave (Crash) Kinetic⇒thermal Important for dense CSM

RadioactivitiesMiniature (?) SN remnantNon-thermal⇒ThermalImportant for more nucleosynthesis (e.g., large E)

#### KM 2012b, 2013a, ApJ

# SN radio emission (collision w/ surroundings)

- Days weeks
  - Progenitor + breakout.
- Weeks months
  - Ejecta mass + Energy.
  - CSM/ISM density.
  - Cosmic ray acceleration.





#### ALMA ToO conducted (KM+)

#### KM 2013, ApJ, 762, 14

# **Early-Phase Radio & Progenitor**



Assuming a next SN @ galactic center, radio follow-up may be complementary to NIR (huge abs in opt. & radio sky is more quiet).

Radio in first few days ⇒ Shock velocity ⇒ Progenitor radius

Radio in > 10 days ⇒ CSM density

#### KM, Katsuda, Bamba, Terada, Fukazawa, 2014, ApJ CSM as seen X-rays: example SN IIb 2011dh (YSG)



~  $3 \times 10^{-6} M_{\odot}/yr$  in the final ~ 1,000 yrs (for v ~ 20 km/s) Consistent with "single stellar wind" from YSG. However, not enough to get rid of all the H-envelope  $\Rightarrow$ Binary interaction in the past (delay to the explosion).

#### CSM as seen in optica: SN IIb 2013df



 $H\alpha$  ⇒Mass loss: ~ 5 10<sup>-5</sup> M<sub>☉</sub> yr<sup>-1</sup> for 20 km s<sup>-1</sup> ( > 10 x 2011dh!) Progenitor (candidate) detected for SNe IIb 2013df and 2011dh R ~ 600R<sub>☉</sub> (2013df) vs. 200R<sub>☉</sub> (2011dh):

Relation to Progenitor and mass loss (know **no** model prediction!)

#### Huge CSM around SNe IIn (what to make it?)



Optical light curves for ~ 10 SNe IIn >  $10^{-3} M_{\odot}/yr$  for all SNe IIn Mostly steady state mass loss, not eruptive events ( $\neq$  LBVs).

X-rays (rare detection) ~ 10<sup>-2</sup> M<sub>O</sub>/yr for 2005ip Decreasing CSM density e.g., Chandra+ 2012 (2006jd)

# **SN evolving into Remnant**

 And of course we (?) can observe a galactic SN for many centuries.





# Summary for the CSM observation.

- Basically sensitive to the CSM density and environment: Many unresolved problems regarding the progenitor evolution in the final days to centuries.
- Connection between the progenitor and mass loss for SNe IIb/Ib/Ic, crazy huge mass loss for SNe IIn.
- For an SN @ Galactic center, radio (and X) may be a good alternative to optical counterpart search.
- Radio an for example provide an independent measure of progenitor radius if observed in the first few days.

Again, especially pre-SN v detection can be a key.

#### Yet further for a next galactic SN

- So far mostly for SNe @ > a few Mpc (except for SN 1987A @ 50 kpc).
- Of course there are many diagnose observations (almost) only possible for a Galactic one – so a few examples (among many)

# **Resolved Imaging/spectroscopy**

#### Optical: SN 1987A (50 kpc) Sep. 24, 1994 WFPC2 Feb. 6, 1998 WFPC2 Mar. 23, 2001 WFPC2 Jan. 5, 2003 ACS/HRC Dec. 12, 2004 ACS/HRC Dec. 6, 2006 ACS/HRC Supernova 1987A · 1994-2006 Hubble Space Telescope • WFPC2 • ACS NASA, ESA, P. Challis, and R. Kirshner (Harvard-Smithsonian Center for Astrophysics STScI-PRC07-10

#### Radio: SN 1993J (2.6 Mpc)



R ~ 0.01 pc (V/10,000 km/s) (t/1yr) 0.04 pc/1" @ Galactic center

HST or 8m AO: ~ 0.15"  $\Rightarrow$  Spatially resolved in the first year 30m AO (e.g., TMT, 2021-?): ~ 0.01"!!! (0.0004 pc @ GC)



Especially around Galactic center, many scattering clouds. Collect the light emitted at "all" the directions (3D nature in the explosion  $\Leftrightarrow$  v burst).

# Summary

#### Neutrinos

= 0125 m

Mass loss by stellar wind Instabilities Binary



Mass Metallicity Rotation Binary Neutrinos

Inner debris of the Supernova 1987A (SN 1987A) ring





Diversity within the same mechanism. Even different mechanisms.



# Summary

(post-) Breakout (opt. & radio)

Mass

3D Echo

#### Neutrinos

**y-rays** 



CSM crush

(radio, opt., X)

#### **Companion detection**

Mass loss by stellar wind Instabilities **Binary** 

Supernova 1987A (SN 1987A) ring

**Metallicity Rotation** Neutrinos **Binary Opt.** *@* peak ルギウフ re-SN activity Diversity within the same mechanism. Inner debris of the Inner bipol outflow of debris **Even different** Entropy mechanisms. Hot fing Opt. @ late Spatially resolved 1600 km

# Let's Go Supernova

/ERO

ペテルギウス爆発 その時 地球では

#### 前田啓一 京都大学 宇宙物理学教室 第2回超新星ニュートリノ研究会, 2016/1/6-7