KamLAND:液体シンチレータ 検出器によるSRN探索

新学術「地下素核研究」超新星ニュートリノ研究会 2016年1月6日

東北大学ニュートリノ科学研究センター

清水 格

超新星背景ニュートリノ 超新星ニュートリノ ~Gpc ~Mpc R_{SN} ~1 yr

超新星ニュートリノ をないて、 本保内で、 太陽ニュートリノ RSN ~0.01 yr 暗黒物質対消滅ニュートリノ

地球ニュートリノ

P. Lipari, Introduction to Neutrino Physics (2002)

検出技術:液体シンチレータ

液体シンチレータの発光

イオン化エネルギー

燐光

再結合

蛍光

~nsec

Super-Kamiokande 50 kton 超純水 チェレンコフ光を観測 6 p.e. / MeV エネルギー閾値 ~5 MeV 観測対象 太陽ニュートリノ 大気ニュートリノ 超新星ニュートリノ 陽子崩壊 など

KamLAND 1 kton 超純液体シンチレータ シンチレーション光を観測 500 p.e. / MeV エネルギー閾値 ~0.3 MeV 観測対象 原子炉反ニュートリノ 地球反ニュートリノ 低エネルギー太陽ニュートリノ 核子崩壊

など

超新星ニュートリノ(1987A)

将来の超新星ニュートリノ測定

Normal Hierarchy (NH)

 $\begin{aligned} \frac{\mathrm{d}N_{\bar{\nu}_{\mathrm{e}}}}{\mathrm{d}E_{\bar{\nu}_{\mathrm{e}}}} &= |U_{\mathrm{e}1}|^2 \frac{\mathrm{d}N_{\bar{\nu}_{1}}}{\mathrm{d}E_{\bar{\nu}_{1}}} + |U_{\mathrm{e}2}|^2 \frac{\mathrm{d}N_{\bar{\nu}_{2}}}{\mathrm{d}E_{\bar{\nu}_{2}}} + |U_{\mathrm{e}3}|^2 \frac{\mathrm{d}N_{\bar{\nu}_{3}}}{\mathrm{d}E_{\bar{\nu}_{3}}} \\ &= |U_{\mathrm{e}1}|^2 \frac{\mathrm{d}N_{\bar{\nu}_{\mathrm{e}}}^{0}}{\mathrm{d}E_{\bar{\nu}_{\mathrm{e}}}} + \left(1 - |U_{\mathrm{e}1}|^2\right) \frac{\mathrm{d}N_{\nu_{\mathrm{x}}}^{0}}{\mathrm{d}E_{\nu_{\mathrm{x}}}}, \end{aligned}$ Inverted Hierarchy (NH)

 $\frac{\mathrm{d}N_{\bar{\nu}_{\rm e}}}{\mathrm{d}E_{\bar{\nu}_{\rm e}}} = |U_{\rm e3}|^2 \frac{\mathrm{d}N_{\bar{\nu}_{\rm e}}^0}{\mathrm{d}E_{\bar{\nu}_{\rm e}}} + \left(1 - |U_{\rm e3}|^2\right) \frac{\mathrm{d}N_{\nu_{\rm x}}^0}{\mathrm{d}E_{\nu_{\rm x}}} \simeq \frac{\mathrm{d}N_{\nu_{\rm x}}^0}{\mathrm{d}E_{\nu_{\rm x}}}$

ニュートリノ振動・質量階層

Fig. by Y. Suwa

重力波・電磁波観測との統合解析

液体シンチレータによる測定

原子炉・地球ニュートリノよりも多い

爆発の数日〜数時間前に速報アラームを世界に発信 "爆発の予報" → 同時観測準備 ニュートリノ・重力波・電磁波の同時観測が実現する

超新星背景ニュートリノ (SRN)

世界の液体シンチレータ検出器

- 稼働中 KamLAND, Borexino, LVD, Daya Bay
- 将来計画 LENA, JUNO, SNO+, Hanohano, RENO-50

LENA実験

Cavern

height: 115 m, diameter: 50 m shielding from cosmic rays: ~4,000 m.w.e.

Muon Veto

plastic scintillator panels (on top) Water Cherenkov Detector 3,000 phototubes 100 kt of water reduction of fast neutron background

Steel Cylinder

height: 100 m, diameter: 30 m 70 kt of organic liquid 30,000 – 50,000 phototubes

Buffer

thickness: 2 m non-scintillating organic liquid shielding from external radioactivity

Nylon Vessel

separating buffer liquid and liquid scintillator

Target Volume

height: 100 m, diameter: 26 m 50 kt of liquid scintillator

LENA (Low Energy Neutrino Astrophysics)

- 50 kton液体シンチレータ LAB(リニアアルキルベンゼン)+ 発光剤
- ニュートリノ天体物理
 - 超新星ニュートリノ
 - 超新星背景ニュートリノ (SRN)
 - 太陽ニュートリノ
 - 地球ニュートリノ
- <mark>素粒子物理</mark> ニュートリノ振動 陽子崩壊

JUNO実験

	KamLAND	JUNO
LS mass	~1 kt	20 kt
Energy Resolution	6%/√E 3%/√E	
Light yield	250 p.e./MeV	1200 p.e./MeV

エネルギー分解能の改善が必要

JUNO (Jiangmen Underground Neutrino Observatory)

- 20 kton液体シンチレータ LAB(リニアアルキルベンゼン)+ 発光剤
- ニュートリノ天体物理
 - 超新星ニュートリノ
 - 超新星背景ニュートリノ (SRN)
 - 太陽ニュートリノ
 - 地球ニュートリノ

- 素粒子物理
ニュートリノ質量階層
振動パラメータ精密測定
陽子崩壊

液体シンチレータの候補

LS materials data

	PC	PXE	LAB	KamLAND
Chemical Formula	C9H12	C16H18	C18H30	PC + C12
Flash Point [°C]	48	167	140	64
Density [g/cm^3]	0.88	0.99	0.86	0.78
Relative Light Intensity [%]	1	1	1	- 0.7
Attenuation Length [m] (Purity Dependent)	8	12	- 20	- 20
Cost [\$/L]	- 4	~ 4	- 2	- 4

Cosmic Background Discrimination for the Rare Neutrino Event Search in BOREXINO and LENA, Dissertation von, Michael Wurm

LAB (リニアアルキルベンゼン)

n = x + y = 10 - 13

PPO(発光溶質)

要求される性能

- 高発光量 → 高エネルギ分解能
- 高透過率 → 大容量・高エネルギー分解能
- 低コスト → 大容量
- 高引火点 (> 50℃) → 安全性
- 検出器の化学耐性 ----> 汎用性

SRN検出の見込み

KamLANDでの観測結果 (2011)

バックグランド1:原子炉ニュートリノ

M. Wurm et al. arXiv:0701305

熱出力のデータから正確にフラックスを計算 ↓ ~10 MeV以上での原子炉ニュートリノの寄与は十分に小さい

Barbara Ricci, Neutrino Telescope 2011

バックグランド4:大気ニュートリノ

BG期待数(7.5 < E < 30.0 MeV)

Reaction	Number of Events
$\nu(\overline{\nu}) + {}^{12}C \rightarrow \nu(\overline{\nu}) + n + {}^{11}C + \gamma$	13.2
$\nu(\overline{\nu}) + {}^{12}\mathrm{C} \rightarrow \nu(\overline{\nu}) + n + {}^{10}\mathrm{B} + p$	1.4
$\nu(\overline{\nu}) + {}^{12}\mathrm{C} \rightarrow \nu(\overline{\nu}) + n + {}^{6}\mathrm{Li} + \alpha + p$	1.4
$\nu(\overline{\nu}) + {}^{12}\mathrm{C} \rightarrow \nu(\overline{\nu}) + n + {}^{9}\mathrm{Be} + 2p$	0.3
$\nu(\overline{\nu}) + {}^{12}\mathrm{C} \rightarrow \nu(\overline{\nu}) + 2n + {}^{10}\mathrm{C}$	0.1
Total	16.4 ± 4.7

SRNフラックス上限値

Estimation and Best-fit

LENA実験のバックグランド予測

<u>シミュレーション</u>

Neutrino MC generator

Particle tracking

Geant4

GENIE

R. Mollenberg et al. arXiv:1409.2240

Neutrino-Nucleon interaction cross section + final state interaction (intra-nuclear cascade)

Reaction channel	Branching ratio
(1) $\nu_{\rm x} + {}^{12}{\rm C} \to \nu_{\rm x} + {\rm n} + {}^{11}{\rm C}$	38.8%
(2) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + {\rm p} + {\rm n} + {}^{10}{\rm B}$	20.4%
(3) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + 2{\rm p} + {\rm n} + {}^{9}{\rm Be}$	15.9%
(4) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + {\rm p} + {\rm d} + {\rm n} + {}^{8}{\rm Be}$	7.1%
(5) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + \alpha + {\rm p} + {\rm n} + {}^{6}{\rm Li}$	6.6%
(6) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + 2{\rm p} + {\rm d} + {\rm n} + {}^{7}{\rm Li}$	1.3%
(7) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + 3{\rm p} + 2{\rm n} + {}^{7}{\rm Li}$	1.2%
(8) $\nu_{\rm x} + {}^{12}\mathrm{C} \rightarrow \nu_{\rm x} + \mathrm{d} + \mathrm{n} + {}^{9}\mathrm{B}$	1.2%
(9) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + 2{\rm p} + {\rm t} + {\rm n} + {}^{6}{\rm Li}$	1.1%
(10) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + \alpha + {\rm n} + {}^{7}{\rm Be}$	1.1%
(11) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + 3{\rm p} + {\rm n} + {}^{8}{\rm Li}$	1.1%
other reaction channels	4.2%

KamLANDのバックグラウンド予測と良く一致

LENA実験のバックグランド対策

軽粒子 (e+/e⁻)と重粒子 (p)の発光波形の違いを利用した識別

PSD (pulse shape discrimination)

R. Mollenberg et al. arXiv:1409.2240

L. Oberauer, 17th Lomonosov conference, 2015

LAB(リニアアルキルベンゼン)ベースの 液体シンチレータでのPSD性能を評価

PSDカット後のバックグランド予測

L. Oberauer, 17th Lomonosov conference, 2015

IBD	Atmospheric	Fast neutron	DSNB Signal
acceptance	NC rate $[10 y]$	rate $[10 y]$	$\langle E_{\nu} \rangle = 12 \mathrm{MeV}$
90.0 %	$378 \pm 2(\text{stat.})$	$8.6\pm0.5(ext{stat.})$	40.2
80.0%	$155 \pm 1(\text{stat.})$	$4.5\pm0.4(ext{stat.})$	35.8
50.0%	$34.4\pm0.5(\mathrm{stat.})$	$2.1\pm0.3(ext{stat.})$	22.4
40.0%	$21.8\pm0.4(ext{stat.})$	$1.8\pm0.2(ext{stat.})$	17.9

- 信号検出の有意性 $3\sigma @ 10 year (レート+エネルギースペクトル)$

SRN 測 定の 展 望

まとめ

- 様々な天体ニュートリノ(太陽・地球・超新星・超新星背景 ニュートリノ)が液体シンチレータ検出器の観測範囲であり、 将来は 20 ktonを超える大型検出器が稼動予定である。
- KamLAND実験での超新星背景ニュートリノ探索によって、大気ニュートリノバックグランドが探索感度を制限することが明らかとなり、将来実験では波形識別(PSD)によって2桁程度のバックグランド除去を必要とする。
- まずは3σ程度での検出(10年観測@LENA, JUNO)を目 指す。SK-Gdとの統合解析で有意性はさらに高まる。