Gd熱中性子捕獲ガンマ線の 精密測定と計算モデルの構築

Takatomi Yano, Kobe University

Collaborators: M.Sakuda, K.Hagiwara, Y.Yamada, P.Das, I.Ou, T.Mori, Y.Koshio (Okayama), A.Kimura, H.Harada, N.Iwamoto, S.Nakamura (JAEA)

2016/1/7 第二回超新星ニュートリノ研究会

Outline

1. Introduction

- Gd(n, γ) reaction
- Application in neutrino experiments
- Gd(n, γ) models

2. Experiment

• Measuring gamma-ray from Gd(n, γ)

3. Analysis

- Geant4 detector modeling
- A new code for $Gd(n, \gamma)$ modeling
- Comparison with Experiment and Model

4. Summary

Introduction

$Gd(n, \gamma)$ reaction

- 安定原子核の中でGd-157は最大の熱中性子捕獲断面積を 持つ。Gd-155も同様に大きな断面積をもっている。
 - 天然同位体比はどちらも~15%程。
- どちらの熱中性子捕獲反応も、計8MeVのガンマ線カス ケードを放出する。

Reaction	Cross-section (barn)					
n+p \rightarrow d+ γ (2.2MeV)	0.3326	ᅌᄼᇆᇲᇲᇰᆂᄴᇰᇾ				
n+ ⁶ Li $\rightarrow \alpha$ + ³ He	940	し、反く使われる中性于遮				
$n+^{10}B \rightarrow \alpha +^{7}Li$	3837					
$n+^{155}Gd \rightarrow ^{156}Gd+\gamma$	60,900	×15 ~ ×250				
$n+^{157}Gd\rightarrow^{158}Gd+\gamma$	254,000	Cross-section!				
$n+^{155}Gd \rightarrow {}^{156}Gd+\gamma s$ [8.5 MeV] $n+^{157}Gd \rightarrow {}^{158}Gd+\gamma s$ [7.9 MeV]						

Introduction (2)

ニュートリノ実験におけるGd(n, γ)の応用

 Gd(n, r)反応を用い、陽電子とガンマを遅延同時計測する ことで、反ニュートリノ反応と他の反応を区別できる。
 →BGの低減・信号の純度向上による精度の良い解析

実際に使っている/使う実験

- ニュートリノ振動の測定実験(θ₁₃)
 - D-CHOOZ, Daya-Bay, RENO…
- 超新星背景ニュートリノ探索
 - Super-Kamiokande + Gd (池田さん発表)

Super Kamiokande detector

- 50kton water
- ~2m OD viewed by 8-inch PMTs
- 32kt ID viewed by 20-inch PMTs
- 22.5kt fid. vol. (2m from wall)
- SK-I: April 1996~
- SK-IV is running

o ■ Trigger efficiency >99%@4.0MeVkin ~86%@3.5MeVkin

Inner Detector (ID) PMT: ~11100 (SK-I,III,IV), ~5200 (SK-II) Outer Detector (OD) PMT: 1885

超新星背景ニュートリノの探索

SRN (supernova relic neutrino)探索

- SRN = 過去の全ての超新星からのニュートリノが積算されたもの。感度を上げれば常に検出出来る。
- 現在の上限はモデル計算~×2程度。宇宙線µによるスパレーションバックグラウンドにリミットされている。

どんな物理があるか?

素合成の解明

進化史の解明

超新星のE₂情報=超新星元

星の生成レート = 宇宙の

• ブラックホール生成・仄暗

い超新星等の、変な超新星

バックグラウンドを低減すればSKで見つかるはず!
 (10~60 events in 10 years.)

K.Bays et al., Phys.Rev.D85, 052007 (2012) SK 1497+794+562 Days candidates>16MeV/22.5kton year 8 Excluded (E>16MeV) v_e→e⁺ (90%C.L.) 6 Factor 5 HMA LMA З 6 MeV CE 3.0 3 60 6.5 7.0 7.5 8.0 T_, in MeV

Introduction (3) Feature of Low Energy Neutron Reaction with Nuclei (A>25)

- $E_n < 1$ MeV: $(n,p), (n,\alpha)$ suppressed due to Coulomb Barrier.
- E_n<200keV (~1st excited state):
 Only (n,n) and (n,γ) possible.
- E_n<1keV: (n,γ) dominates.
- Feature: Resonance appears.
 - > $n+A \rightarrow C^* \rightarrow n+A$ (elastic)
 - > $n+A \rightarrow C^* \rightarrow B+\gamma$ (capture) (n, γ)

 $(n+A \rightarrow D+E \text{ (fission) for U or very heavy nuclei)}$

Gd(n, γ)反応の検出

Detection of $Gd(n, \gamma)$ events

- 液体シンチレーター検出器では、全エネルギー8MeVを精 度良く測ることが出来る。
- 水チェレンコフ検出器では、チェレンコフ閾値~1MeV× ガンマ線の本数分、見えないエネルギーが出来る。 → 正確なGd(n, γ)反応のモデルが必要。

$Gd(n, \gamma)$ in Liquid sci. det.

現行のGd(n,γ)の計算モデル

Gadolinium Gamma-Ray induced by Neutron capture, Experiment and Transition model.

Purpose □ Gd(n, r)反応の基礎的な測定情報を高精度で得る。(本数・エネルギー分布) □ Ge(n, r)の再現の良いモデルを作成・検証する。 □ SK-Gdなど、Gd(n, r)を使っているニュートリノ実験・他の(医学・原子炉)用途に情報を提供。

Experimental method

Ge検出器アレイANNRIによる高精度Gd(n, γ)データの取得。
 Geant4によるANNRI検出器のモデリング。

Geant4フレームワーク内で動作可能なGd(n, γ)モデルの作

成・実験データとの比較。

ANNRI Beam line

- J-PARC MLF (物質生命科学施設) 内の パルス中性子ビームラインの一つ。
- 中性子強度 1.3x10¹¹n(/s/m²) at E_n=1.5-25 meV
 - 陽子 beam 300kW時
 - ΔEn/En ~ 1%
- ANNRI検出器 = Ge検出器アレイによる X + n → X + γ 反応測定を行う。

ANNRI 検出器

Accurate Neutron-Nucleus Reaction Measurement Instrument

Gd(n, r) 事象トリガー条件

- 1. 少なくとも1つのGe検出器に E > 0.1 MeVの ヒットがある。
- 2. BGOs に E>0.1 MeV のヒットがない。

実験データセット

2012 B0025 -天然Gd標的

Experimental period : 2013/Mar/14-17 : Natural Gd Target

(99.99% 5mm×5mm×10,20µm)

Total event Calibration source : ${}^{60}Co, {}^{137}Cs$

 $: 3 \times 10^9$ events

2014 B0124 -濃縮Gd標的 (155Gd, 157Gd)

Experimental period : 2014/Dec/11-16 Target

Total event

- :濃縮Gd粉末(酸化物) 155Gd (91.65%), 157Gd (88.4%)
- : 8×10⁹ events
- Calibration source : ²²Na, ⁶⁰Co, ¹³⁷Cs, ¹⁵²Eu, NaCl

検出器シミュレーション

検出器シミュレーション (2) 線源によるエネルギー/エフィシエンシの較正

- ピーク検出効率 (0.11%@1.17MeV for 1Ge検出器, 絶対値)を⁶⁰Coを用いて測定。(全Geでは2.4%)
- 相対値はNaCl(n, γ)反応及び¹⁵²Euを用いて測定。
- MCとデータで0.5MeV-9MeVについて良い一致(±20%)

検出器シミュレーション(3)

- Geant4の低エネルギーEMモデルを試験。
- いずれのモデルでもコンプトンテール部を含め
 実データの再現性は良好。
 - MCではPenelopeモデルを使用。

E_{γ} spectrum (n+Gd \rightarrow E_{γ} + X)

- Black : 2012 Data (4meV < E_n < 100 meV, TOF method)
- Blue : Geant4.9.6 + G4NDL4.2 [standard] (1 odd peaks in 3000keV ~ 5000keV)
- Red : Geant4.9.6 + GLG4SIM (2. good peaks >5MeV)
 →GLG4Sim improved the discrete peaks, while having the same continuum as Geant4 standard version.

Gd(n, *γ*)モデル計算

中性子捕獲反応からのア線放出は2つのモードに大別される。

- 1. 連続スペクトラム (93.8%)
- 2. 離散スペクトラム (6.2%)
 - 5.62MeV+2.25MeV [1.3%]
 - 5.88MeV+1.99MeV [1.6%]
 - 6.74MeV+1.11MeV [3.2%]
 - 7.87MeV [0.02%], 代表的な分岐をGLG4simから流用。

■ 90%以上の放出は連続スペクトラムによる。

連続スペクトラム モデル計算

- E_{ex}の励起エネルギーを持つ原子核が、e_rのエネルギーを持つガンマ線を放出する確率P(e_r, E_{ex})は以下の式で表される。
 - Hauser-Feshbach Method の変形

$$P(e_{\gamma}, E_{ex}) = \frac{\sum_{XL} T_{XL}(e_{\gamma}) \rho(E_{ex} - e_{\gamma})}{\int_{0}^{E_{ex}} \sum_{XL} T_{XL}(e_{\gamma}) \rho(E_{ex} - e_{\gamma}) de_{\gamma}}$$

- 鍵となるパラメータは2つ
 - T_{XL} : Gamma transition coefficient
 - XLはE1, M1, E2等の各巨大共鳴状態を示す。
 - *p* : Level density

簡単なρとT_xの説明と図

- 対鍵となるパラメータは2つ
 - T_{XL}: 励起原子核とエネルギーe_rをもつガンマ線
 との結合の強さ

Gamma Transition Coefficient T_{XL}

- Gamma Transition Coefficient T_{XL}(e_r) は Photon Strength Function f_{XL} を用いて以下のように表される。 T_{XL}(e_r)=2π e_r^{2L+1} f_{XL}(e_r)
 - X=E (electric) or M (magnetic), L=1 (dipole), 2 (quadrupole).
- GdのPSFは逆反応である r + ^{A+1}Gd→n+ ^AGdを用いて Kopeckyらによって部分的に測定されている。今回はその 結果を使用してPSFの計算を行った。

$$f(E_{\gamma}) = \frac{1}{3(\pi\hbar c)^2} \sum_{i=1}^{2} \frac{\sigma_i E_{\gamma} \Gamma_i^2}{(E_{\gamma}^2 - E_i^2)^2 + E_{\gamma}^2 \Gamma_i^2}$$

$$\Gamma(\varepsilon_{\gamma},T) = \frac{\Gamma}{E^2} (\varepsilon_{\gamma}^2 + 4\pi^2 T^2)$$

i = 2GDRs $(E_1, \text{ electric dipole})$

Kopecky. PRC 47.312

	Enegry (E _i)[MeV]	Cross Section(o _i)[mb]	エネルギー幅 (Г _i)[MeV]
	11.2	180.0	2.6
¹⁵⁶ Gd	15.2	242.0	3.6
	11.7	165.0	2.6
¹⁵⁸ Gd	14.9	249.0	3.8

MCとDataの比較

Energy deposit in single Ge detector

- 離散スペクトル 実測した各アの強度からモデルに導入を予定。
 連続スペクトル
 - 低エネルギー側・高エネルギー側のチューニング 2γ事象のスペクトルの検証

Summary

- 近年ν実験分野でGd(n, r)反応の応用が盛んである。
 Gd(n, r)反応が放出するガンマ線の詳細なデータが必要。
- MLF・ANNRI検出器を使ってGd(n, g) [天然Gd,¹⁵⁵Gd,¹⁵⁷Gd]
 の精密データを高統計(数G事象)で取得。
 - 検出器MCを構築。0.5~8MeVのピーク検出効率について ±20%で実データと一致。今後、E>0.1MeVで±10~20% まで理解したい。
- より良い再現性が期待される、新しいr放出計算コードを作 成。
 - Geant4 MCに組み込んで使用可能。
 - 今後さらにチューニングを予定。
- 計算コードを用いた連続スペクトルの再現と、ANNRIの特徴 である正確な離散スペクトルの測定によって精密なGd(n, γ) 反応モデルを作成する。

Appendix

Chyzh et al. Phys.Rev.C Vol84, 014306 (2011)

FIG. 6. (Color online) Comparison of experimental MSC spectra [(a) and (b)] and gated MSC spectra [(c) and (d)] with simulations in which the scissors mode was completely absent for resonances with $J^{\pi} = 1^{-}$. Predictions of simulations are represented as a gray band. The KMF model was used for the E1 PSF while the BSFG model was used for the level density.

DANCE実験のグループは同様の計算コードDICEBOXをもっている。 これはGd(n,g)の結果を良く再現している。

Cross section (σ [cm²]) and reaction rate w(1/s)

 Low energy neutron capture cross section increases as 1/v, even if no resonances exist.

Neutron capture reaction $Gd(n,\gamma)$

 When a neutron is produced via neutrino reaction or nuclear reaction, the energy is in the MeV range. At MeV range, n-p elastic scattering is dominant.

${}^{10}B(n,\alpha)$ • Resonances at E₀=370, 530, 1830keV

ENDF Request 3749, 2013-Sep-06,03:37:28

Weisskopf Model on Resonance Schroedinger Equation in a potential (V_0) . $\psi(r)=u(r)/r$

$$\left[\frac{\mathrm{d}^2}{\mathrm{d}r^2} + \frac{\sqrt{2m(E+V_0)}}{\hbar^2}\right]u(r) = 0$$
$$\frac{\mathrm{d}^2}{\mathrm{d}r^2}u(r) = \begin{cases} -K^2u(r) & (r \le a) \\ -k^2u(r) & (r > a) \end{cases}$$

$$K = \frac{\sqrt{2m(E+V_0)}}{\hbar}$$
$$k = \frac{\sqrt{2mE}}{\hbar}$$

• Solution: $u_I(r) = A\sin(Kr)$

 $u_{II}(r) = A'\sin(kr + \delta)$

• Boundary condition at r=a: u(a), u'(a) $A\sin(Ka) = A'\sin(ka + \delta)$ $A(Ka)\cos(Ka) = A'(ka)\cos(ka + \delta)$ $integrad a = \frac{\tan(ka + \delta)}{Ka}$

$$\frac{\tan(Ka)}{Ka} = \frac{\tan(ka+\delta)}{ka}$$
I) General case (Ka $\pm \pi/2$)
 $A \sin(Ka) = A' \sin(ka + \delta)$ $ka \ll 1$
 $A \sim A' \times ka \ll A'$
II) Resonance (Very special case)
 k
 $Ka = \pi/2$ $\delta = \pi/2$
 $A' \sim A$
 $\sigma = \frac{4\pi}{k^2} \sin^2 \delta$
 $= (I) 4\pi a^2 \text{ or } (II) 4\pi \lambda^2$

1. Histrory of Thermal Neutron-Nucleus Reaction

*Key numbers: Thermal energy $E_{thermal} = kT (T=293K)=25.3meV=1/2mv_n^2$, Neutron velocity $v_n=2200m/sec$

- **1934:** I.Curie, F.Joliot: $\alpha + A \rightarrow B^*$ (*synthesis of new radioactive elements*);
- 1933-1938:Fermi,Amaldi et al.: n+H/n+A , Thermalization of neutrons from MeV to meV, $E_n = (1/2)^N \cdot E_0$ (N=20-30 n-p scattering)
- 1935 -1936 Bohr, Bethe, Breit-Wigner: Development of low energy neutron reaction (Compound nucleus, Resonance);
- 1938 Fermi: Nobel Prize in Physics (*Discovery of nuclear reactions brought about by slow neutrons*)

Harn, Strassman: $n+U \rightarrow A+B$ (*Discovery of the fission of heavy nuclei, 1944 Nobel*)

- 1942.Dec.2, Fermi observed the first artificial self-sustaining nuclear chain reaction (Chicago Pile-1)
- □ 1956: Reines et al. detected neutrinos : They established the delayed coincidence method with $CdCl_2$ solution (target) + Liq.Scintillator . →1995 Nobel Prize (Existence of the neutrino)
- 2015: RENO, Dchooz, Daya Bay (Liq.Scint.+Gd), EGADS(Water+Gd)

$$\overline{P}_e + p \rightarrow e^+ + n$$

Typical thermal neutron reactions

Gd(Z=64,A=157) has the largest cross section among all stable nuclei. Cd,Gd,Sm,Eu have resonance in the thermal energy. $|\epsilon_{th}-\epsilon_0|$ <D/2, Level Distance D=2-3eV

Reaction	Cross section (barn)	Resonance Energy E ₀ (eV)
n+p →d+γ (2.2MeV)	0.3326	
n+ ³ He →p+ ³ H	5333	
n+ ⁶ Li $\rightarrow \alpha$ + ³ He	940	
n+ ¹⁰ B $\rightarrow \alpha$ + ⁷ Li	3837	
$n+^{113}Cd \rightarrow ^{114}Cd^* \rightarrow \gamma$	20615	178meV
n+ ¹⁴⁹ Sm→ ¹⁵⁰ Sm*→γ	40140	97.3meV
$n+^{155}Gd \rightarrow ^{156}Gd^* \rightarrow \gamma$	60900	26.8meV
$n+^{157}Gd \rightarrow ^{158}Gd* \rightarrow \gamma$	254000	31.4meV
$n+^{161}Eu \rightarrow ^{162}Eu^* \rightarrow \gamma$	9200	321meV
$n+^{235}U \rightarrow A+B$ (Fission)	583	
Cf. n+ ¹³⁵ Xe (<mark>unstable</mark>)→ ¹³⁶ Xe*→γ	2.65Mb	84meV

JPARC Beamline (BL04) and Ge Spectrometer (ANNRI)

- JPARC/MLF/BL04 : Started Operation in 2012
- Neutron beam: $1.3 \times 10^{11} n(/s/m^2)$ at $E_n = 1.5 25$ meV at Power 300kW, ($\Delta E_n / E_n \sim 1\%$),
- Spectrometer (ANNRI): two Ge clusters with BGO veto shields.
- Each cluster : an array of 7 Ge crystals, arranged in hexagon ($\Delta E_{\gamma}=9$ keV@1.3MeV) Peak efficiency 2.4%@1.17MeV

