超新星の爆発メカニズムと マルチメッセンジャー

Explosion Mechanisms of Core-Collapse Supernovae and the Multi-messenger Observables

Kei Kotake

(Fukuoka University)

with <u>K. Nakamura (Fukuoka U.), T. Takiwaki (NAOJ),</u> <u>T. Kuroda (Univ. Basel), S.Horiuchi (Virginia Tech),</u> <u>K. Hayama (ICRR), and M. Tanaka (NAOJ)</u>

> 新学術「地下素核研究」 第4回超新星ニュートリノ研究会 2018年1/7, 箱根静雲荘

Many workshops to celebrate 30 years of SN1987A !

Workshop on Supernova at Hyper-Kamiokande

12-13 February 2017

Asia/Tokyo timezone

Looking back ~30 years, significant progress made in GW oservation !

10

Typical thresholds of proto-types in 1989 (MIT, Garching, Caltech, Glasgow and Tokyo)

Sensitivity curves of laser interferometers

10 km long: Einstein Telescope (ET) could start ~2025.

40 km long: Cosmic Explore (CE) could operate ~2035.

The base-line and final goal (s) What is the physics for exploding massive stars?

- 1). For which types of the progenitors (IIp, Ib/Ic, IIn) is rotation/B field most important ?
- 2). and 3). If important, why and how ?
- 4). Collapsar, Magnetar scenarios: Which one successful (or other) ? why ?
- 5). How long will it take before first-principles doable ? Strategies ?

Typical Scales of CCSN multimessenger

DeLanev et al. (2010)

Outline

 Brief introduction (5 min) what we can learn from SN multi-messengers ?

✓ Recent progresses in "Supernova Theory" (30 min)
 ☆ The Core-Collapse Supernova Theory
 :what is the essence to blow up massive stars?
 ☆ Candidate mechanisms: based on first-principle multi-D radiation-hydrodynamic simulations

 ✓ Observational Signatures (30 min)
 ☆ Detectability of neutrino and gravitational-wave signals
 ☆ Perspectives toward "MM" astronomy (correlation analysis between GWs/neutrinos, electromagnetic messengers)
 What can we learn from the central engine ?

Representative Neutrino reactions in the SN core

Neutrino emission/absorption	Scattering with (N:nucleon (A, Z): Nuclei)	Pair reaction Bremsstrahlung		
		$N + N \rightleftarrows N + N + \nu + \bar{\nu}$		
$p + e^- \rightleftharpoons n + \nu_e$	$\nu + N \rightleftharpoons \nu + N$	$e^+ + e^- \rightleftharpoons \nu + \bar{\nu}$		
$n + e^+ \rightleftharpoons p + \bar{\nu}_e$	$\nu + (A, Z) \rightleftharpoons \nu + (A, Z)$	Mass energy 0.000511 GeV C Electron The The		
$(A, Z) + e^{-} \rightleftharpoons (A, Z - 1) + \nu_e$	$\nu + e^{\pm} \rightleftharpoons \nu + e^{\pm}$	0.1066 GeV ↓ ● Muon the of show		

(see, however, Bollig et al (2017))

The condition of "Neutrino trapping"

K. Sato (1975) PTP

Muon creation in supernova matter facilitates neutrino-driven explosions

R. Bollig,^{1,2} H.-T. Janka,¹ A. Lohs,³ G. Martínez-Pinedo,^{3,4} C.J. Horowitz,⁵ and T. Melson¹ ¹Max-Planck-Institut f
ür Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching, Germany

Evolution of Radial velocity profiles

<u>pre-collapse SNe</u>

based on radiation-transport simulation (MGFLD) KK+06

e.g._Kotake+06_Foglizzo+14_Mezzacappa+15, Janka17 for a review)

Short Summary (till shortly after bounce)

✓ SN simulations over these 20 years show that the bounce shock always stall because the kinetic energy of the shock is lost by the photo-dissociation of iron nuclefi.
 → Direct "prompt" hydrodynamic explosion fails.
 ✓ The bounce shock turns into the standing accretion shock.
 ✓ The supernova problem is how to revive the stalled shock into explosion!

Typical scales after bounce and Density-Temperature relation

How the neutrino mechanism works ?

✓ If the neutrino heating could last > ~0.25 sec, the absorbed energy exceeds the local grav. binding energy -> inflows turns into outflows !
 ✓ More correctly neutrino cooling occurs, which delays the onset of explosion.

After +50 years of CCSN modeling : "Multi-D" neutrino mechanism

(pioneered by Colgate & White (1966), review by Kotake & Kuroda (2016), Janka (2012), Burrrows (2013))

"Four steps" in neutrino-driven explosions (see, e.g., Suwa et al. 2010,2011,2013, ApJ)

1st : After bounce, the bounce shock stalls.

2nd: Neutrino-driven convection and the SASI. (Standing-Accretion-Shock-Instability)

rd: In the heating region, dwell-time of material gets longer due to non-radial motions in multi-D environments. (Turbulence helps explosion),

4th: At around O(100)s ms after bounce, neutrino-driven explosions set in.

2D radiation-hydro simulation of a 15 M_{sun} star

✓ IDSA scheme for spectral neutrino transport
 ✓ Lattimer-Swesty EOS (K=220 MeV)
 :compatible with 2 M_{sun} NS observation

3D vs. 2D

(e.g., Takiwaki,KK, Suwa (2012,2014), ApJ)

 ✓ 3D explosions are generally weaker than 2D. (11.2, 27 M_{sun} : Hanke et al. (2014), however, not for 9.6 M_{sun}

Melson et al. (2015))

 \Rightarrow The "3D vs. 2D problem" is progenitor dependent.

✓ No "Bethe" models obtained in 3D....

⇒ Need to find ingredients to foster 3D explosions ! Candidates: Rotation (Takiwaki+16, Summa+17), General Relativity (Kuroda+14, Ott+17), Microphysics (Molecer+16, KK+17)

Microphysics (Melson+16, KK+17)

Multi-messengers from CCSNe:

Drill for SN 2018xx

For the next Galactic event (several/century..), how we observe multi-messengers and what we can learn about the supernova physics ?

<u>Overview of "Multi-messenger signals" from exploding 17 M_{sun} star</u>

Nakamura, Horiuchi, Tanaka, Hayama, Takiwaki, KK (MNRAS) 2016

First Alert: Neutrinos ! (here for a Galactic event @ 8.5 kpc)

From an old textbook....

(1) Importance of rotation, B-field

第3章 中性子星とブラックホ・	ール 佐藤 勝彦
§3・1 超新星爆発とパルサーの発見	K. Sato
§3・2 超高密度物質の世界	
a) 原子核からの中性子のこぼ	b) 中性子星物質 ·······97
れだし97	c) クオーク物質 100
§3・3 中性子星とブラックホール…	
a) TOV方程式と中性子星の	b) 自転している中性子星・パル
構造 103	+ 106
§3・4 超新星爆発とブラックホール	の形成
a) コアの収縮と重力エネルギ	b) ニュートリノによるエネルギー
ーの解放 109	輸送と爆発の数値実験 111
c) 星の自転・磁場と超新星爆	d)超新星爆発とニュートリノ・
発	重力波の観測 115

(2) Multi-messenger astronomy

恒星社

Stellar evolutions and their fate: edited by D. Sugimoto published in 1979

d) 超新星爆発とニュートリノ・重力波の観測 超新星爆発によりブラックホールや中性子星が作られる時,大量 されるだけでなく,大量のニュートリノや強い重力波も放出される (2)や(3)の場合であっても我々の銀河内で起こる場 合その検出は可能であり,ニュートリノ検出との同時観 測を通じて爆発機構の解明にきわめて重要である.

速く自転していたのでは、そもそも重力収縮が起こらないので弱い

Gravitational Waves (GWs) from Stellar Collapse (see reviews in Ott (2009), Fryer & New (2011), Kotake (2013), GW amplitude from the quadrupole formula Kotake and Kuroda (2016) in "Handbook of Supernovae") Typical values at the formation of Neutron Star (NS) $h_{ij} = \frac{2G}{c^4 R} \frac{\partial^2}{\partial t^2} Q_{ij} \sim \frac{R_s}{R} \left(\frac{v}{c}\right)^2$ $R_s = 3 \operatorname{km}\left(\frac{M}{M_{\odot}}\right) \quad v/c = 0.1 \quad R = 10 \operatorname{kpc}$ Quadrupole moment 10-10 aLIGO adVirgo 10-19 KAGRA $h \sim 10^{-20}$ ET (Crude) upper bound

10 km long: Einstein Telescope (ET could start ~2025(?) 40 km long:

Cosmic Explore (CE) could operate ~2035.(?)

a" 10⁻²¹ 10-22 10-23 10-24 10^{2} 103 frequency[Hz]

CCSN event in our galaxy (several/century) is primary target !

Good news ! (Future)

 $\int_{M^{ofe}} \frac{e^{n_{s}}}{h_{ij}} = \epsilon \frac{R_s}{R} \left(\frac{v}{c}\right)^2$ If collapse proceeds spherically, $\epsilon = 0$ no GWs !

What makes the SN-dynamics deviate from spherical symmetry is essential for the GW emission mechanism !

Two candidates : The key is "initial rotation rate" (Ω_0) of the iron core

(See reviews in Janka ('17), Mezzacappa et al. ('15), Foglizzo et al. ('15), Burrows ('13), Kotake et al. ('12))

	Neutrino mechanism	MHD mechanism	
Progenitor	Non- or slowing- rotating star $(\Omega_0 < \sim 0.1 \text{ rad/s})$	Rapidly rotating star with strong B fields $(\Omega_0 > \sim \pi \text{ rad/s}, B_0 > \sim 10^{11} \text{ G})$	
Main origin of GW emission	Turbulent Convection and SASI	Rotating bounce and Non-axisymmetric instabilities	
Progenitor fraction	Main players	~1 (?) % (Woosley & Heger (07), ApJ): (hypothetical link to magnetar, collapsar)	
20 M 20 M 5355 6355 63566 6356 6356 6356 6356 6356 6356 6356 6356 6356	Tpb=2 ms 5.00 9.0 11.2 M _{sun} from Nakamura e	15 M _{sun} star from Lentz et al. ('15) t al. in prep	
Y x 192 km	x x 400 km	400 km	

(see also, Burrows et al. ('17), Melson et al. ('15), Lentz et al. ('15), Roberts et al. ('16), B. Mueller ('15), Takiwaki et al. ('16))

<u>GW signatures from 2D neutrino-driven explosion</u></u>

✓ <u>Three generic phases</u> in neutrino-driven models:

- 1. Prompt-convection phase : within ~50 ms post-bounce
 - 2. Non-linear phase (Convection/SASI) : Downflows hit the PNS surface
 - 3. Explosion phase : Long-lasting signal but terminates if BH forms

(Müller et al. (2004, ApJ), Cerda-Duran et al. (2013, ApJ))

Waveforms have no template character: stochastic explosion processes.

How to detect GWs with no-template features...

✓ Excess power method: Flanagan & Hugh (1998)

⇒ Decompose data-stream into time-frequency domains
 ⇒ Search for "hot" regions with excess power in the spectrogram !

✓ GW spectrogram from Murphy et al. ('09) ApJ.

Simulated supernova waveform

Probable GW signal?

(With no template character...) Three generic phases are in the spectrogram !
 Secular increase of typical GW frequency (f_p) reflects the PNS evolution.
 On top of f_p, the high frequency component comes from strong downflows to PNS.
 These qualitative features are common to more recent 2D and 3D models.
 The GW amplitudes ~ 1/10 than in 2D (KK et al. 2009, Yakunin et al. (2017))

Recent Status of CCSN simulations

First full-3D-GR simulations with multi-energy neutrino transport (M1)

Kuroda, KK, Takiwaki, Thielemann submitted

see also, GR models using the CoCoNuT code (CFC(+) by Cerda-Duran+2011, Obergaulinger and Aloy (2017): 2D by Dimmelmeier et al. (2007), B. Mueller (2015), B. Mueller et al. (2017):3D)

✓ "FUGRA" : Fully General Relativistic code with multi-energy neutrino trAnsport

Kuroda, Takiwaki, and KK, ApJS. (2016)

The marriage of **BSSNOK formalism** (3D GR code, Kuroda & Umeda (2010, ApJS)) $G = \{\tilde{\gamma}_{ii}, \tilde{A}_{ij}, \phi, K, \tilde{\Gamma}^{i}, \alpha, \beta^{i}\}$ + M1 scheme; Shibata+2011, Thorne 1981, (see also, Just et al. (2015), O'Connor (2015) for recent work)

Evolution equation of neutrino radiation energy

$$\partial_t \sqrt{\gamma} E_{(\varepsilon)} + \partial_i \sqrt{\gamma} \left(\alpha F^i_{(\varepsilon)} - \beta^i E_{(\varepsilon)} \right) + \sqrt{\gamma} \alpha \partial_{\varepsilon} \left(\varepsilon \tilde{M}^{\mu}_{(\varepsilon)} n_{\mu} \right)$$

$$= \sqrt{\gamma} \left(\alpha P^{ij}_{(\varepsilon)} K_{ij} - F^{i}_{(\varepsilon)} \partial_i \alpha - \alpha S^{\mu}_{(\varepsilon)} n_{\mu} \right),$$

$$\partial_t \sqrt{\gamma} F_{(\varepsilon)i} + \partial_j \sqrt{\gamma} \left(\alpha P_{(\varepsilon)i}^{\ j} - \beta^j F_{(\varepsilon)i} \right) - \sqrt{\gamma} \alpha \partial_\varepsilon \left(\varepsilon \tilde{M}^{\mu}_{(\varepsilon)} \gamma_{i\mu} \right) \\ = \sqrt{\gamma} \left[-E_{(\varepsilon)} \partial_i \alpha + F_{(\varepsilon)j} \partial_i \beta^j + (\alpha/2) P_{(\varepsilon)}^{jk} \partial_i \gamma_{jk} + \alpha S_{(\varepsilon)}^{\mu} \gamma_{i\mu} \right]$$

✓ Analytic Closure with the use of Minerbo-type Eddington factor (Murchikova, Abdikamalov + (2017))

$$P_{(\varepsilon)}^{ij} = \frac{3\chi_{(\varepsilon)} - 1}{2} P_{\text{thin}(\varepsilon)}^{ij} + \frac{3(1 - \chi_{(\varepsilon)})}{2} P_{\text{thick}(\varepsilon)}^{ij}$$

$$\chi_{(\varepsilon)} = \frac{5 + 6\bar{F}_{(\varepsilon)}^2 - 2\bar{F}_{(\varepsilon)}^3 + 6\bar{F}_{(\varepsilon)}^4}{15}$$

Closed set of rad-hydro equations

 ∂_t

$$\begin{split} & \partial_t \sqrt{\gamma} S_i + \partial_j \sqrt{\gamma} \left(S_i v^j + \alpha P \delta_i^j \right) \\ &= -\sqrt{\gamma} \left[S_0 \partial_i \alpha - S_k \partial_i \beta^k - 2\alpha S_k^k \partial_i \phi \right. \\ &+ \alpha e^{-4\phi} (S_{jk} - P \gamma_{jk}) \partial_i \tilde{\gamma}^{jk} / 2 + \alpha \int d\varepsilon S_{(\varepsilon)}^{\mu} \gamma_{i\mu} \right], \\ & \partial_t \sqrt{\gamma} \tau + \partial_i \sqrt{\gamma} \left(\tau v^i + P \left(v^i + \beta^i \right) \right) \\ &= \sqrt{\gamma} \left[\alpha K S_k^k / 3 + \alpha e^{-4\phi} (S_{ij} - P \gamma_{ij}) \tilde{A}^{ij} \right. \\ &- S_i D^i \alpha + \alpha \int d\varepsilon S_{(\varepsilon)}^{\mu} \mu_\mu \right], \\ & \partial_t (\rho_* Y_e) + \partial_i (\rho_* Y_e v^i) = \sqrt{\gamma} \alpha m \left(\int \frac{d\varepsilon}{\varepsilon} \left(S_{(\nu_e, \varepsilon)}^{\mu} - S_{(\overline{\nu}_e, \varepsilon)}^{\mu} \right) u_\mu \right) \end{split}$$

 $\partial_{i} a \pm \partial_{i} (a v^{i}) = 0$

Table 1 The Opacity Set Included in this Study and their References				
Process	Reference			
$n\nu_e \leftrightarrow e^-p$	Bruenn (1985), Rampp & Janka (2002)	✓ 3 flavor		
$par{ u}_e \leftrightarrow e^+ n$	Bruenn (1985), Rampp & Janka (2002)	neutrino		
$ u_e A \leftrightarrow e^- A'$	Bruenn (1985), Rampp & Janka (2002)			
$\nu p \leftrightarrow \nu p$	Bruenn (1985), Rampp & Janka (2002)	transport		
$\nu n \leftrightarrow \nu n$	Bruenn (1985), Rampp & Janka (2002)	✓ Base-line		
$\nu A \leftrightarrow \nu A$	Bruenn (1985), Rampp & Janka (2002)	• Duse mit		
$ u e^{\pm} \leftrightarrow u e^{\pm}$	Bruenn (1985)	opacity		
$e^-e^+ \leftrightarrow u ar{ u}$	Bruenn (1985)	(the supplement)		
$NN \leftrightarrow \nu \bar{\nu} NN$	Hannestad & Raffelt (1998)	(t.b.updated)		

GW signautures from 3D-GR models with strong SASI vs. weak SASI activity

(from Kuroda, KK, & Takiwaki ApJL (2016), see also Andresen, B, E Müller and Janka (2017))

✓ Two EOSs \rightarrow SFHx (Steiner et al. (2013), fits well with experiment/NS radius, Steiner+(2011)), HS(TM1) (Shen et al. (1998)).

✓ SASI activity higher for softer EOS (due to shorter growth rate, e.g., Foglizzo et al. ('06)).

is only 2~3 kpc, but could extend out to 100 kpc when FT and CE are on-line (>2035).
 ✓ Detection of neutrinos (Super-K, IceCube) important to get timestamp of GW detection.
 ✓ The SASI activity, if very high, results in characteristic signatures in both GWs and neutrino signals (e.g., Tamborra et al. (2012) for SASI-induced neutrino signals).

Correlation between GWs and neutrinos with strong SASI activity (15 M_{sun} + SFHx)

The simultaneous detection potentially tells the distance between the neutrino
 sphere and PNS radius ! (Need to follow long-term 3D evolution how long this continues..)

The Origin of the Nobel-Prize-awarded BHs (7~40 M_{sun})?

✓ FUGRA results of 70 M_{sun} (M_{CO} ~ 28.5 M_{sun}) (progenitor from Takahashi et al. (2014))

- ✓ **<u>Earliest BH formation</u>** after bounce (~300 ms postbouce) !
- Before the BH formation, <u>monotonic increase</u> of neutrino luminosity and rms energy.
 (consistent with 1D, e.g., Sumiyoshi+ (2006), Nakazato(+2008,2013), Fischer+ (2009), Huedepohl+(2016))
- ✓ Strong GW emission is visible to 1 Mpc, <u>but not</u> O(100) Mpc...
- ✓ Our code needs upgrade to follow long after BH formation...

Switching gears to MHD mechanism (rapid rotation required !!)

3D rotating explosion simulation of a 27 M_{sun} star ($\Omega_0 = 2 \text{ rad/s}$) with IDSA. (Takiwaki, KK, and Suwa, MNRAS Letters, (2016), see also Summa et al. (2017)).

Neutrino signatures from rapidly rotating explosion of 27 M_{sun} star

Correlation of GW and neutrino signatures from the 3D rotating model,

Need improvement in opacity of our 3D-GR code (with energy transport)!

Table 1							
The Opacity	Set Included	in this	s Study	and	their	References	

Process	Reference	Summarized In
$n\nu_e \leftrightarrow e^-p$	Bruenn (1985), Rampp & Janka (2002)	Appendix A.1
$p \bar{ u}_e \leftrightarrow e^+ n$	Bruenn (1985), Rampp & Janka (2002)	Appendix A.1
$ u_e A \leftrightarrow e^- A'$	Bruenn (1985), Rampp & Janka (2002)	Appendix A.1
$\nu p \leftrightarrow \nu p$	Bruenn (1985), Rampp & Janka (2002)	Appendix A.2
$\nu n \leftrightarrow \nu n$	Bruenn (1985), Rampp & Janka (2002)	Appendix A.2
$\nu A \leftrightarrow \nu A$	Bruenn (1985), Rampp & Janka (2002)	Appendix A.2
$\nu e^{\pm} \leftrightarrow \nu e^{\pm}$	Bruenn (1985)	Appendix A.3
$e^-e^+ \leftrightarrow \nu \bar{\nu}$	Bruenn (1985)	Appendix A.4
$NN \leftrightarrow \nu \bar{\nu} NN$	Hannestad & Raffelt (1998)	Appendix A.5

KTK (2016), ApJS (essentially, Bruenn rates + Bremsstrahlung)

Most advanced set (e.g., Fischer(2016), Bollig et al. (2017))

	Weak process	References
1	$e^- + p \rightleftharpoons n + \nu_e$	Reddy et al. (1998) ; Horowitz (2002)
2	$e^+ + n \rightleftharpoons p + \bar{\nu}_e$	Reddy et al. (1998) ; Horowitz (2002)
3	$n \rightleftharpoons p + e^- + \bar{\nu}_e$	Fischer et al. (2016b)
4	$e^- + (A, Z) \rightleftharpoons (A, Z - 1) + \nu_e$	Juodagalvis et al. (2010)
5	$\nu + N \rightleftharpoons N + \nu'$	Bruenn (1985); Mezzacappa & Bruenn (1993a); Horowitz (2002)
6	$\nu + (A, Z) \rightleftharpoons (A, Z) + \nu'$	Bruenn (1985); Mezzacappa & Bruenn (1993a)
7	$\nu + e^{\pm} \rightleftharpoons e^{\pm} + \nu'$	Bruenn (1985); Mezzacappa & Bruenn (1993b)
8	$e^- + e^+ \rightleftharpoons \nu + \bar{\nu}$	Bruenn (1985)
9	$N + N \rightleftharpoons N + N + \nu + \bar{\nu}$	Hannestad & Raffelt (1998)
10	$ u_e + \bar{\nu}_e \rightleftharpoons \nu_{\mu/\tau} + \bar{\nu}_{\mu/\tau}$	Buras et al. (2003) ; Fischer et al. (2009)
11	$(A,Z)^* \rightleftharpoons (A,Z) + \nu + \bar{\nu}$	Fuller & Meyer (1991) ; Fischer et al. (2013)
	Note: unless stated o	therwise, $\nu = \{\nu_e, \bar{\nu}_e, \nu_{\mu/\tau}, \bar{\nu}_{\mu/\tau}\}$ and $N = \{n, p\}.$

✓ Quantitative GW • neutrino signal prediction, the updates in opacities mandatory!

"A" self-consistent 3D model

Wongwathanarat et al. (2015)

Cas A

DeLaney et al. (2010)

Hydrodynamic model: Mixing, RT, RM instabilities

 $\frac{7.5 \text{ e7 km}}{(\min - \operatorname{day})}$

Wongwathanarat et al. (2016)

To-do-1: Long-term evolution in self-consistent 3D (GR) models \Rightarrow confront CCSN theory with observation \Rightarrow Pragmatism

To-do-2 : Full GR and Boltzmann project :

(5D/4D with approximate transport)

the stalled shock revived !

 \Rightarrow ultimately test whether the stalled shock would revive. \Rightarrow Perfectionism

Summary

- In 2D, <u>a number of explosion models (> 400)</u> obtained by independent groups. Some are enough energetic to account for observations (E_{exp}, Ni).
- 2. 3D explosions generally under-energetic than 2D.
 - progenitor dependence yet unclear.
 - ✓ Need to find some ingredients to foster 3D explosions.
 - Need neutrino physics update ? (e.g., Melson et al. (2015), KK+(2017))
 - Impact of rotation/magnetic fields needs to be clarified in 3D self-consistent models.

(e.g., Takiwaki and Kotake (2018), Obergaulinger et al. (2016))

- 3. 3D GR modelling has just started with increasing microphysical inputs. (e.g., It takes time ... next generation machines needed !)
- 4. Multi-messenger analysis of neutrino and GWs are in steady progress.
 : provide information to measure "SASI" activity. and to break the degeneracy (M_{PNS}, R_{PNS}, T_{PNS}, R_{shock}, EOS etc.)
 ⇒ important probe to the explosion physics for the SN20xx !

Many thanks!