新学術「地下素核」第四回超新星ニュートリノ研究会 @四季の湯強羅静雲荘 2018/01/08

Systematic study of neutrino spectra emitted from core-collapse supernovae: Effect of neutrino oscillation

> Tomoya Takiwaki (NAOJ) Hirokazu Sasaki (NAOJ) Shio Kawagoe (University of Tokyo)

- 1. Motivations
 - 1. features of detectors
 - 2. time variability
 - 3. spectrum
 - 4. Basics of neutrino oscillation
- 2. Method
- 3. Results
 - 1. Typical model
 - 2. Time dependence
 - 3. Progenitor dependence
- 4. Summary

NS birth=SN: Rough sketch has been made. => Detailed Study with Multi-Detectors

Comparison of Detector Capability

	Super-Kamiokande		
Target Material	H_2O	$\mathbf{C}_{n}\mathbf{H}_{2n+2}$	H_2O
Volume	32 kton	1 kton	0.6 Gton
Feature	Light Curve Spectrum (>7MeV) Direction	Spectrum (>0.5MeV)	Light Curve (Time variability)

Please modify the description if I am wrong.

- 1. Motivations
 - 1. features of detectors
 - 2. time variability
 - 3. spectrum
 - 4. Basics of neutrino oscillation
- 2. Method
- 3. Results
 - 1. Typical model
 - 2. Time dependence
 - 3. Progenitor dependence
- 4. Summary

Comparison of Detector Capability

	Image: Super-Kamiokande		<image/>	
Target Material	H_2O	$\mathbf{C}_{n}\mathbf{H}_{2n+2}$	H_2O	
Volume	32 kton	1 kton	0.6 Gton	
Feature	Light Curve Spectrum (>7MeV) Direction	Spectrum (>0.5MeV)	Light Curve (Time variability)	
Please modify the description if I am wrong.				

Light Curve and Time Variability 1200 IceCube,10kpc Equator Pole 27 M_{sun}-1000 800 IceCube Noise 700 800 Event rate [ms⁻¹] Rate [ms⁻¹ 600 600 500 400 400 300 200 200 Ŭ0 100 200 300 400 500 0 Time [ms] Tamborra+ 2013 -2000.1 0.25 0.15 0.2 0.3 Time [s] A+ [cm] Takiwaki+ 2018 (Accepted in MNRAS Letters) Low T/W instability -5 S15.0(SFHx) 50 100 150 n T_{pb} (ms) SASI (Standing Accretion Shock Instability) Kuroda+ 2017 From the time variability of detected neutrino count, we can extract information on the hydrodynamic instabilities 8 that occur in SNe.

See Kotake_san's presentation

- 1. Motivations
 - 1. features of detectors
 - 2. time variability
 - 3. spectrum
 - 4. Basics of neutrino oscillation
- 2. Method
- 3. Results
 - 1. Typical model
 - 2. Time dependence
 - 3. Progenitor dependence
- 4. Summary

Comparison of Detector Capability

Super-Kamiokande		Transformed by the second s
H_2O	$\mathbf{C}_n\mathbf{H}_{2n+2}$	H_2O
32 kton	1 kton	0.6 Gton
Light Curve Spectrum (>7MeV) Direction	Spectrum (>0.5MeV)	Light Curve (Time variability)
	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Super-KamiokandeKamLANDH2OCnH2n+232 kton1 ktonLight Curve1 ktonSpectrum (>7MeV)Spectrum (>0.5MeV)Direction

Please modify the description if I am wrong.

Neutrino Spectra and Neutrino Oscillation

The effect of neutrino oscillation could be prominent in low energy region!

11

Neutrino Spectra and Neutrino Oscillation

Original Spectrum

After Neutrino Oscillation

Fogli+ 2009

Above 7 MeV, SK can correctly determine its spectrum. Below 7 MeV, KamLAND can determine the spectrum. The cooperation of the two detectors is important! Motivation of our study

Fogli+ 2009

How does the spectrum bump robustly appears in the realistic situation?

What can we learn from it?

13

- 1. Motivations
 - 1. features of detectors
 - 2. time variability
 - 3. spectrum
 - 4. Basics of neutrino oscillation
- 2. Method
- 3. Results
 - 1. Typical model
 - 2. Time dependence
 - 3. Progenitor dependence
- 4. Summary

Basics of Neutrino Oscillation

Beginning from Schrödinger equation.

$$\mathrm{i}\hbar\frac{\partial}{\partial t} \begin{pmatrix} \nu_e \\ \nu_X \end{pmatrix} = H \begin{pmatrix} \nu_e \\ \nu_X \end{pmatrix}$$

Hamiltonian is not diagonal and affected by matter and neutrino itself.

Various Neutrino Oscillations r = 10km, $\rho = 10^{10}$ g/cm³ Neutrinos Trapped $r = 100 \text{km}, \ \rho = 10^7 \text{g/cm}^3$ **Collective Effect** $r = 1000 \mathrm{km}, \ \rho = 10^{-1} \mathrm{g/cm^3}$ MSW Effect $r=1 { m kpc}, \ ho=0 { m g/cm}^3$ Vacuum Oscillation

Though the travel to the Earth, neutrino flavor changes by many effects.

- 1. Motivations
 - 1. features of detectors
 - 2. time variability
 - 3. spectrum
 - 4. Basics of neutrino oscillation
- 2. Method
- 3. Results
 - 1. Typical model
 - 2. Time dependence
 - 3. Progenitor dependence
- 4. Summary

Summary of Numerical Methods

- Hydro Simulation 3DnSNe
 Spherical coordinate 1D, PLM (Mignone 2014)
 HLLC (Toro 2003), van Lear Limiter
 Phenomenological General Relativity (Marek+ 2006)
- Neutrino Radiation Simulation
 3flavor IDSA
 Updated Reaction Set (next page)
- Neutrino oscillation (post process)
 Single angle approximation (should be updated!)
 3 flavor (Dasgupta 2010)

New Reaction Sets

 $\begin{array}{c} \mathbf{O} \ \nu_e \ n \rightleftharpoons e^- \ p \\ \mathbf{O} \ \bar{\nu}_e \ p \rightleftharpoons e^+ \ n \end{array}$ Martínez-Pinedo et al. (2012)Bruenn (1985) Horowitz (2002)Fischer (2016) Reddy et al. (1999) $\mathbf{O} \nu_e A' \rightleftharpoons e^- A$ Juodagalvis et al. (2010) $\mathbf{O} \nu N \rightleftharpoons \nu N$ Bruenn (1985) Horowitz (2002)Horowitz et al. (2017) $\nu A \rightleftharpoons \nu A$ Bruenn (1985), Horowitz (1997) $\nu e^{\pm} \rightleftharpoons \nu e^{\pm}$ Bruenn (1985) $e^- e^+ \rightleftharpoons \nu \bar{\nu}$ Bruenn (1985) $\bigcirc NN \rightleftharpoons \nu \bar{\nu} NN$ Hannestad & Raffelt (1998) Fischer (2016) $\mathbf{O} \nu_e + \bar{\nu}_e \rightleftharpoons \nu_x + \bar{\nu}_x$ Buras et al. (2003); Fischer et al. (2009) $\bigcap \nu_x + \nu_e(\bar{\nu_e}) \rightleftharpoons \nu'_x + \nu'_e(\bar{\nu'_e})$ Buras et al. (2003); Fischer et al. (2009)

- 1. Motivations
 - 1. features of detectors
 - 2. time variability
 - 3. spectrum
 - 4. Basics of neutrino oscillation
- 2. Method
- 3. Results
 - 1. Typical model
 - 2. Time dependence
 - 3. Progenitor dependence
- 4. Summary

Typical Spectrum

Spectrum at 2000km

15M_s(WH07 model) progenitor 112ms after bounce.

Normal mass hierarchy.

Typical Spectrum

22

15M_s(WH07 model) progenitor 112ms after bounce. Normal mass hierarchy.

Self interaction makes a prominent spectral swap in low energy region. However, MSW effects hide the swap and it become less obvious. We should check the feasibility to detect the effect including errors.

Spectrum for electron type neutrino

The spectrum of $\nu_{-}e$ is also interesting! Detector for $\nu_{-}e$ is necessary! Dune?

Case for Inverted Mass hierarchy self-interaction Spectrum at Earth v_e ν_e Strong self final initial initial feature does not ν_e appear in \mathcal{V}_{e} . self final initial initial $\bar{\nu}_e$ Energy [MeV]

- 1. Motivations
 - 1. features of detectors
 - 2. time variability
 - 3. spectrum
 - 4. Basics of neutrino oscillation
- 2. Method
- 3. Results
 - 1. Typical model
 - 2. Time dependence
 - 3. Progenitor dependence
- 4. Summary

Time dependence

Survival probability of low energy neutrino decrease as time proceeds.

- 1. Motivations
 - 1. features of detectors
 - 2. time variability
 - 3. spectrum
 - 4. Basics of neutrino oscillation
- 2. Method
- 3. Results
 - 1. Typical model
 - 2. Time dependence
 - 3. Progenitor dependence
- 4. Summary

Progenitor Dependence

Progenitor Dependence

The early spectra (~100ms) shape are similar.

We are preparing late phase spectra. Stay tuned!

- 1. Motivations
 - 1. features of detectors
 - 2. time variability
 - 3. spectrum
 - 4. Basics of neutrino oscillation
- 2. Method
- 3. Results
 - 1. Typical model
 - 2. Time dependence
 - 3. Progenitor dependence
- 4. Summary

Summary

Systematic study on neutrino oscillation is performed. Single angle approximation is used and hydrodynamics is limited to 1D.

- In normal mass hierarchy, we found a spectral deviation from thermal one for all progenitors (12-40M_s, WH07).
- The feature will continues about 200ms after bounce.
- The effect of ν -self interaction is prominent. However, MSW effect smears that out. An analysis with error should be necessary to clarify the feasibility to detect such a effect (your helps is highly appreciated).
- Sophistication of the method for neutrino oscillation is required to draw a robust conclusion.