Diagnosing the Structure of Massive Stars with Galactic SN Neutrinos (ニュートリノで探る系内超新星親星のコア構造)

Horiuchi, KN et al., J. Phys. G., 44, 114001 (2017) (arXiv:1708.08513)

Ko Nakamura (Fukuoka Univ.)

S. Horiuchi (Virginia Tech.), T. Takiwaki (NAOJ), K. Kotake (Fukuoka Univ.)

新学術「地下素核研究」第4回超新星ニュートリノ研究会 Jan. 8-9, 2018

Numerical simulations of CCSNe

Space:	3D, ~10 ¹³ cm(RSG)	1D or 2D, ~10 ⁹ cm(Fe core+Si,O)
Neutrino:	Boltzmann, Detailed reactions	Approximated, Standard reactions
Gravity:	GR	Newtonian (+GR correction)

Systematic study using a huge number of progenitors

	Space	Neutrino	Gravity	Model #
Ugliano+'12	1D	gray	effective GR	~100
O'Connor+'13	1D	M1	GR	32
Nakamura+'15	2D	IDSA+leakage	Newtonian	~400

Systematic feature of CCSNe – NS mass

- ✓ Focusing on 101 models with solar metallicity. (Metal-poor models also show a similar trend.)
- ✓ PNS mass has a large dependence on models, from ~1.3Mo to >2Mo→BH formation.
- ✓ Monotonic trend in compactness-colored figure.

Systematic feature of CCSNe – v luminosity

- ✓ Focusing on 101 models with solar metallicity. (Metal-poor models also show a similar trend.)
- ✓ Difference is more than double.
 2-6 × 10⁵² erg/s @ t = 200 ms.

✓ Monotonic trend in compactness-colored figure.

Systematic feature of CCSNe – v luminosity

- Focusing on 101 models with solar metallicity. (Metal-poor models also show a similar trend.)
- ✓ Difference is more than double.
 2-6 × 10⁵² erg/s @ t = 200 ms.

✓ Monotonic trend in compactness-colored figure.

characterizing progenitoi structure.

Compactness - Lv, M_{PNS}

Both have a good linear correlation to the compactness.

Progenitor structure from Galactic SN *v* Horiuchi, KN+17

Template of SN neutrino from hundreds of CCSN simulations.

ex.) Expected SN neutrino detection

Progenitor structure (compactness) is determinable ? YES ! if we have **reliable template** & **distance-independent indicator**.

Progenitor structure from Galactic SN *v* Horiuchi, KN+17

1) Reliable template

CCSN models with approximated/simplified scheme.

Code development

- sophisticated transport scheme
- detailed reactions
- effective GR

2) Distance-independent indicator

Detection event number $\propto D^{-2}$, but large uncertainty in the distance to SN (progenitor).

New distance-independent indicator

1) Code Development

Neutrino reactions Bumps in \overline{v}_e light curves. (unrealistic)

$\mathcal{V}x$

Current scheme employs IDSA (ve, $\overline{v}e$) + Leakage (vx). vx information is necessary for neutrino oscillation.

General relativistic effects cannot be ignored even in exploding (NS forming) cases.

1) Code Development

Neutrino reactions Bumps in \overline{v}_e light curves. (unrealistic)

Detailed reactions including ES. \rightarrow bumps disappear.

$\mathcal{V}x$

Current scheme employs IDSA (ve, $\overline{v}e$) + Leakage (vx). vx information is necessary for neutrino oscillation.

IDSA (v_e , $\overline{v_e}$ and v_x)

General relativistic effects cannot be ignored even in exploding (NS forming) cases.

effective GR potential

2) Distance-independent indicator

Early phase (t < ~50 ms): Diffusive neutrino dominant. Less dependent on compactness.

Later phase:

Accretion neutrino dominant. Monotonically dependent on compactness.

2) Distance-independent indicator

Early phase (t < ~50 ms): Diffusive neutrino dominant. Less dependent on compactness.

Later phase:

Accretion neutrino dominant. Monotonically dependent on compactness.

Distance-independent, compactness-dependent index.

$$\frac{\int Lv \, dt}{\int Lv \, dt} \sim \frac{N_{acc}}{N_{diff}}$$

Ratio of neutrino detection numbers between two phases.

Time-integrated IBD events (SK, 10 kpc)

Event number ratio to N(0-50 msec).

flat $\leftarrow \rightarrow$ steep. Note that our method is not suitable for much later phase.

Degenerate in high ξ1.5.

Best CC in $\xi_{2.0}$.

Blue: MSW mixing. Gray: $P(\overline{v}e) = 0 \& 1$.

Short summary & discussions

- ✓ We have explored the systematic features of CCSN using ~400 numerical models.
- The compactness-observables correlation suggests that we could infer the progenitor structure (even before explosion).
- ✓ The ratio $N_{\text{acc.}}/N_{\text{diff.}}$ can be a good distance-independent indicator.
- ✓ Additional neutrino flavor mixing beyond MSW,
- ✓ Simulations should be in <mark>3D</mark> including rotation, B-field, ...

3D CCSN Simulations

Mesh coarsening scheme

Too much small cell width around the polar.

 \rightarrow Simulation time step Δt is very small.

 $L \sim r \Delta \theta \Delta \phi \qquad \Delta t \sim L/c_{\rm s}$

 \Rightarrow Estimate Δt in "coarsened grid".

3D test calculation.

Averaged (or space-integrated) values such as shock radius show good agreement.

(preliminary)

s11.2 (WHW02) LS220 + Si gas 2-flavor IDSA + leakage Newtonian

Preliminary result of 3D simulation

2D long-term simulation results in low-energy explosion (~ 10^{50} erg, Mueller'15).

 \rightarrow More energetic in 3D.

Rotation of Massive Star Cores

✓ Rotation of massive star core is unknown.

✓ Theoretical (numerical) prediction. Zwerger & Müller '97 Woosley & Weaver '95 Heger+'00,'03.

M=15, 20 Mo, *v*_{ini} = 200 km/s

Nearly rigid rotation within ~1000km.

0.3(w/ B-field) - 3.0(w/o) rad/s.

Angular momentum distribution based on calculations of stellar evolution

 ✓ s11.2 model with different Ωθ [rad/s].

51.2

- ✓ All models turns to shock expansion at ~300 ms.
- ✓ Ω₀=2.0 model presents oblate structure just after core bounce.

515.0

- ✓ Non-rotating model does not explode.
- ✓ Slowly rotating models successfully revive the shock.
- Rapidly rotating model might explode.

Angle-averaged shock radius

The core of s11.2 progenitor is surrounded by dilute envelope. \rightarrow Rotation effect is weak.

Rotation strongly affects dynamics. Shock revival time is not aligned with rotation speed.

Neutrino luminosities and average energies

Rapid rotation ($\Omega o = 2.0 \text{ rad/s}$) reduces neutrino luminosity and average energy up to ~20 %.

Summary & discussions

- ✓ We have explored the systematic features of CCSN using ~400 numerical models.
- The compactness-observables correlation suggests that we could infer the progenitor structure (even before explosion).
- \checkmark The ratio *N*acc./*N*diff. can be a good distance-independent indicator.
- ✓ Additional neutrino flavor mixing beyond MSW,
- ✓ Simulations should be in <mark>3D</mark> including rotation, B-field, …
 - 3D CCSN models from multiple progenitors are being available.
 - (Very) rapid rotation affects neutrino properties.
- \checkmark Uncertainty in the nuclear physics \rightarrow Nakazato-san's talk.