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Numerical simulations of CCSNe

Space:

Neutrino：

Gravity：

３D,
~1013 cm（RSG）

Boltzmann,
Detailed reactions

GR

１D or ２D,
~109 cm（Fe core+Si,O）

Approximated,
Standard reactions

Newtonian
（＋GR correction）

Systematic study using a huge number of progenitors
Space Neutrino Gravity Model #

Ugliano+'12 1D gray effective GR ~100
O'Connor+'13 1D M1 GR 32
Nakamura+'15 2D IDSA+leakage Newtonian ~400



Systematic feature of CCSNe – NS mass

ü Focusing on 101 models with solar metallicity.
(Metal-poor models also show a similar trend.)

ü PNS mass has a large dependence on models,
from ~1.3Mo to >2Mo→BH formation.
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Fig. 1. Mass distribution of some selected models at a pre-collapse stage (top panel) and at the time of
core bounce (bottom).

ξM ≡ M/M⊙

R(M)/1000km
. (1)

The previous studies used M = 2.5 M⊙ (O’Connor & Ott 2011; Ugliano et al. 2012) or 1.75 M⊙

(O’Connor & Ott 2013) and estimated ξM at the time of core bounce. On the other hand, the

outer radius of our computational domain (5000 km) is too small to contain 2.5 M⊙ for all

models and even 1.75 M⊙ for some less massive models (see Figure 1). In this paper, we estimate

ξM at M = 2.0 and 2.5 M⊙ (ξM = ξ2.0, ξ2.5) directly from the progenitor models. It should be

noted that our definition of ξ2.5 gives almost the same value as the compactness estimated at

bounce, because the radius R enclosing 2.5 M⊙ is far from the center and the radial velocity

vR there is very small (e.g., for s15.0 model, R = 1.7×109 cm and vR =−6.8×106 cm s−1). By

comparing the top to bottom panel of Figure 1, the position of the outer envelope (>∼ 108 km)

changes very slightly. This is because of the long dynamical time scale there compared to the

short time period before bounce (∼ 200 ms). Actually ξ2.5 of s15.0 model in our definition is

0.149, which is very close to the value (0.150) estimated by O’Connor & Ott (2011) at bounce.

5

ü Monotonic trend in compactness-colored figure.
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Systematic feature of CCSNe – ν luminosity

νe νe

ü Focusing on 101 models with solar metallicity.
(Metal-poor models also show a similar trend.)

ü Difference is more than double.
2-6 ×1052 erg/s @ t = 200 ms.

※ smoothed over Δt = 20 ms.
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Fig. 1. Mass distribution of some selected models at a pre-collapse stage (top panel) and at the time of
core bounce (bottom).

ξM ≡ M/M⊙

R(M)/1000km
. (1)

The previous studies used M = 2.5 M⊙ (O’Connor & Ott 2011; Ugliano et al. 2012) or 1.75 M⊙

(O’Connor & Ott 2013) and estimated ξM at the time of core bounce. On the other hand, the

outer radius of our computational domain (5000 km) is too small to contain 2.5 M⊙ for all

models and even 1.75 M⊙ for some less massive models (see Figure 1). In this paper, we estimate

ξM at M = 2.0 and 2.5 M⊙ (ξM = ξ2.0, ξ2.5) directly from the progenitor models. It should be

noted that our definition of ξ2.5 gives almost the same value as the compactness estimated at

bounce, because the radius R enclosing 2.5 M⊙ is far from the center and the radial velocity

vR there is very small (e.g., for s15.0 model, R = 1.7×109 cm and vR =−6.8×106 cm s−1). By

comparing the top to bottom panel of Figure 1, the position of the outer envelope (>∼ 108 km)

changes very slightly. This is because of the long dynamical time scale there compared to the

short time period before bounce (∼ 200 ms). Actually ξ2.5 of s15.0 model in our definition is

0.149, which is very close to the value (0.150) estimated by O’Connor & Ott (2011) at bounce.
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Systematic feature of CCSNe – ν luminosity
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(Metal-poor models also show a similar trend.)
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※ smoothed over Δt = 20 ms.

ü Monotonic trend in compactness-colored figure.
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Fig. 1. Mass distribution of some selected models at a pre-collapse stage (top panel) and at the time of
core bounce (bottom).

ξM ≡ M/M⊙

R(M)/1000km
. (1)

The previous studies used M = 2.5 M⊙ (O’Connor & Ott 2011; Ugliano et al. 2012) or 1.75 M⊙

(O’Connor & Ott 2013) and estimated ξM at the time of core bounce. On the other hand, the

outer radius of our computational domain (5000 km) is too small to contain 2.5 M⊙ for all

models and even 1.75 M⊙ for some less massive models (see Figure 1). In this paper, we estimate

ξM at M = 2.0 and 2.5 M⊙ (ξM = ξ2.0, ξ2.5) directly from the progenitor models. It should be

noted that our definition of ξ2.5 gives almost the same value as the compactness estimated at

bounce, because the radius R enclosing 2.5 M⊙ is far from the center and the radial velocity

vR there is very small (e.g., for s15.0 model, R = 1.7×109 cm and vR =−6.8×106 cm s−1). By

comparing the top to bottom panel of Figure 1, the position of the outer envelope (>∼ 108 km)

changes very slightly. This is because of the long dynamical time scale there compared to the

short time period before bounce (∼ 200 ms). Actually ξ2.5 of s15.0 model in our definition is

0.149, which is very close to the value (0.150) estimated by O’Connor & Ott (2011) at bounce.
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Compactness - Lν, MPNS

Both have a good linear correlation to the compactness.

PNS mass
＠final simul. time（depends on models）
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ex.）Expected SN neutrino detection

Progenitor structure (compactness) is determinable ？
YES ! if we have reliable template & distance-independent indicator.

Progenitor structure from Galactic SN ν
Horiuchi, KN+17



2) Distance-independent indicator

1) Reliable template

Detection event number ∝ D-2,
but large uncertainty in the distance to SN (progenitor).

CCSN models with 
approximated/simplified scheme.
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1) Code Development

Neutrino reactions

νx

General relativistic effects
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Early phase （t < ~50 ms）:

Later phase:

Diffusive neutrino dominant.
Less dependent on compactness.

Accretion neutrino dominant.
Monotonically dependent on 
compactness.

Distance-independent, compactness-dependent index.

∫    Lν dt
acc.

∫    Lν dt
diff.

〜

Nacc. Ratio of neutrino detection 
numbers between two phases.Ndiff.

2) Distance-independent indicatorMeasuring stellar compactness with neutrinos 8
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Figure 2. The number of IBD events predicted in Super-K in five time windows
of 50 msec duration, as functions of progenitor compactness ⇠2.5. The earliest time
window shows weak dependence on the compactness, while later epochs show strong
dependence due to the progenitor-dependent mass accretion rates.

window �t over the total events in the first 50 msec,

f� =
N(�t)

N(0� 50msec)
, (9)

and plot them against compactness defined by three values of mass M = 1.5M�, 2.0M�,

and 2.5M�, shown on each row. Each column corresponds to a di↵erent time window

�t of 50–100 msec, 150–200 msec, and 250–300 msec. The blue points represent MSW

mixing under normal mass hierarchy. The error bars shown are statistical errors only,

and are dominated by the denominator N(0�50msec) due to its generally smaller total

number of events compared to later time windows. Since the distance uncertainty—and

indeed any systematic uncertainty that a↵ects both N(�t) and N(0�50msec) equally—

cancel, the y-axis is a measurable quantity that can more robustly be compared with

predictions to infer the compactness.

In general the ratios correlate strongly with compactness. In Figure 3 we label each

panel by the correlation coe�cient, defined

cc =

P
i

(⇠
i

� ⇠̄)(f�,i

� f̄�)qP
i

(⇠ � ⇠̄)2
qP

i

(f�,i

� f̄�)2
, (10)

where bars indicate arithmetic means. The correlation coe�cients are generally high.

In terms of the response of the correlation (i.e., the slope), later time windows are

generally better indicators of compactness defined by larger M . This can be understood

by the fact that the neutrino emission in later epochs is associated with the accretion of

mass shells of higher mass coordinate, at least until shock revival (after shock revival,

@10kpc



Measuring stellar compactness with neutrinos 9
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Figure 3. Predicted ratio of IBD events at Super-K, calculated for multiple time
windows: the left, center, and right columns show the 50–100 msec, 150–200 msec,
and 250–300 msec windows, respectively, all divided by the number of events in the
0–50 msec window. The ratios are plotted as functions of progenitor compactness:
the top, central, and bottom rows show ⇠1.5, ⇠2.0, and ⇠2.5, respectively. Error bars
are statistical errors. Blue points show MSW mixing. Straight lines are linear fits to
the blue points, with the correlation coe�cient labeled for reference. In gray, we show
predictions adopting an extreme ⌫̄e survival probability of 0 and 1 during the accretion
phase, for illustration.

mass accretion is largely halted). In other words, we expect each time window to hold

information about a particular range of mass coordinates, which is to say, it holds

information about a particular range of compactness definitions, with later epochs

probing larger M . A one-to-one mapping is beyond the scope of this paper as it

would require considering the accretion time of a mass element dM at radius R to

the protoneutron star, together with the time-delay in converting the gravitational

binding energy liberated to neutrino emission. Given the angular dependence of mass

accretion in multi-dimensional simulations, average values would need to be defined

that picks out the the bulk of the mass accretion and conversion to neutrino emission.

Nevertheless, the appearance of correlations in Figure 3 encouragingly shows that despite

the possibilities of large asphericities, there are correlations between the progenitor

mass density structure and the neutrino light curve. Thus, we can observe how the

compactness may be inferred from the detected neutrinos. For example, the compactness

Time-integrated IBD events (SK, 10 kpc)
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Short summary & discussions

ü We have explored the systematic features of CCSN using ~400 

numerical models.

ü The compactness-observables correlation suggests that we could infer 

the progenitor structure (even before explosion).

ü The ratio Nacc./Ndiff. can be a good distance-independent indicator.

ü Additional neutrino flavor mixing beyond MSW,

ü Simulations should be in 3D including rotation, B-field, …



3D CCSN Simulations
Melson+'15Hanke+'13 Roberts+'16

27 Mo (WHW02)
t < ~400 ms
LS220 EoS
1D gravity + GR correction 

9.6 Mo (A. Heger)
t < ~400 ms
LS220 EoS
1D gravity + GR correction
Yin-Yang grid 

27 Mo (WHW02)
t < 380 ms
LS220 EoS
GR
Cartesian AMR

2 T. Takiwaki et al.

in Section 2. We discuss our results in Section 3, followed by
a summary in Section 4

2 NUMERICAL SETUP AND PROGENITOR

MODEL

Initial conditions are taken from the 11.2 and 27.0 M⊙ pre-
supernova progenitors of Woosley et al. (2002). The mod-
els, which have been used in Takiwaki et al. (2012, 2014);
Hanke et al. (2013); Müller (2015), are useful to clearly ex-
plore the impacts of rotation The initially constant angular
frequency of Ω0 = 1 or 2 rad/s is imposed inside the iron core
with a cut-off (∝ r−2) outside. Although these angular fre-
quencies are close to the high-end of those from most recent
stellar evolution models (e.g., Heger et al. (2000, 2005), see
also discussions in Ott et al. (2006)), we assume such rapid
rotation to clearly see the impacts of rotation in this study.
The model name is labeled as ”s11.2-R1.0-3D”, which repre-
sents the 11.2 M⊙ model with Ω0 = 1 rad/s that is computed
in 3D simulation.

Our numerical method is based on that in
Takiwaki et al. (2014) except several points. We use
the equation of state (EOS) by Lattimer & Douglas Swesty
(1991) (incompressibility K = 220 MeV). Our code
employs a high-resolution shock capturing scheme with
an approximate Riemann solver of Einfeldt (1988) (see
Nakamura et al. (2015) for more details). For the calculation
presented here, self-gravity is computed by a Newtonian
monopole approximation1. Our fiducial 3D models are
computed on a spherical polar grid with a resolution of
nr ×nθ ×nφ = 384× 64× 128, in which non-equally spatial
radial zones covers from the center to an outer boundary
of 5000 km.2 Our spatial grid has a finest mesh spacing
drmin = 0.5 km at the center and dr/r is better than 2% at
r ≥ 100 km. For a numerical resolution test, we compute
high-resolution runs with nr × nθ × nφ = 384× 128× 256.

In total, we have computed nine 3D models, which con-
sists of six models with the fiducial resolution (i.e., the
two progenitors with Ω0 = 0, 1, 2 rad/s) and three high-
resolution runs for the 11.2 M⊙ model. By using the fastest
K computer in Japan, it typically took 2 months (equiva-
lently ∼ 15 Pflops-day computational resources) for each of
the high-resolution runs.

3 RESULTS

Figure 1 summarizes the blast morphology for the 11.2M⊙

(left panels) and 27.0M⊙ star (right panels), which are help-
ful to compare the hydrodynamics features between the non-
rotating (top) and rapidly rotating (bottom) models, respec-
tively.

In the non-rotating models, s11.2-R0.0-3D (top left)

1 Our 3D rotating models with an improved multipole approx-
imation of gravity (e.g., Couch et al. (2013)) explode more en-
ergetically than those only with the monopole contribution (see,
more details in Takiwaki et al. in preparation).
2 This choice of the outer boundary position was shown to be in-
significant especially in the simulation timescale (! 300 ms post-
bounce) in this work (see section 2.3 in Nakamura et al. (2015)).

Figure 1. 3D iso-entropy surfaces showing the blast morphology
for the non-rotating (top panels) and rapidly rotating (bottom
panels) models of the 11.2 (left) and 27.0M⊙ star (right), respec-
tively. For each panel, the time is given at the top right corner,
which is measured relative to core bounce (t ≡ 0). The rotational
axis is shown in the left bottom panel (z-axis) and the viewing
angle of each plot is all the same.

shows typical features of neutrino-driven convection in the
postshock regions. The rising plumes grow stronger and
larger in angular size from the initial small mushroom-like
Rayleigh-Taylor fingers.

In models with rapid rotation, a clear oblate explosion
is obtained for model s27.0-R2.0-3D (bottom right), in which
the revived shock expands more strongly in the equatorial
plane. This feature is only weakly visible for model s11.2-
R2.0-3D (bottom left) due to the early shock revival (see also,
top panel of Figure 2). Later we present detailed analysis of
the origin of the oblate explosion and point out a new aspect
of rapid rotation for assisting explosions.

Before going into detail, let us shortly summarize the
evolution of the shock and (diagnostic) explosion energy of
all the computed models in Figure 2. The top panels are for
the 11.2 M⊙ series with different Ω0 and different numerical
resolution (with the high resolution being ended with H).
The average shock radii of the standard resolution models
(solid line) and high resolution models (dashed line) do not
deviate from each other. It is important to present that our
results do not strongly depend on the grid size3.

The bottom panel of Figure 2 shows that all the vari-
ations of the non-rotating 27M⊙ progenitor star do not
trend toward an explosion very clearly during the simula-
tion, whereas the rapidly rotating model does so (red solid
line) with the diagnostic energy much bigger than those

3 Apparently our resolution is not sufficient for reproducing re-
alistic viscosity (Couch & Ott 2015)). The convergence may be
partly due to the diffusive feature of the HLLE scheme employed
in this work (e.g., Radice et al. (2015)).

MNRAS 000, 1–5 (2016)

Takiwaki+16

11.2 (&27) Mo (WHW02)
t < ~300 (400) ms
LS220 EoS
Newtonian

Kuroda+16

15 Mo (WW95)
t < ~400 ms
DD2/TM1/SFHx EoS
GR; Cartesian FMR



Too much small cell width around the polar.

→ Simulation time stepΔt is very small.

⇒ Estimate Δt in “coarsened grid”.

3D test calculation.

Averaged (or space-integrated) 
values such as shock radius 
show good agreement.

w/ coarsening

w/o coarsening

Mesh coarsening scheme



s11.2 (WHW02)
LS220 + Si gas
2-flavor IDSA + leakage
Newtonian

(preliminary)
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Preliminary result of 3D simulation

2D long-term simulation results in low-energy explosion （~1050erg, Mueller'15）.

→More energetic in 3D.



Rotation of Massive Star Cores

ends. Furthermore, redistribution of angular momentum and
chemical species were modeled using a set of prescriptions and
assumptions for mixing and transport processes. In particular,
all torques were assumed to lead to rigid rotation on some
physical timescale (Fryer & Heger 2000). The ‘‘magnetic’’
models of Heger et al. (2003b) assume a magnetic dynamo
process that generates fields that inhibit differential rotation
and lead to slower core rotation at collapse.

In Figure 3 the profiles for selected models of the initial
angular velocity versus radius are shown. Note that the differ-
ences due to different progenitor masses are negligible com-
pared with the order-of-magnitude differences introduced by
the inclusion of magnetic field effects during stellar evolution.
One shouldbe cautious, however, in accepting these results since
research on stellar evolution with rotation is still in its infancy.

4. NUMERICAL TECHNIQUES

4.1. Equations of State

For all our calculations involving realistic progenitor models
we have made use of the EOS of Lattimer & Swesty (1991). It is
based on the finite-temperature liquid drop model of nuclei
developed in Lattimer et al. (1985). Our particular implemen-
tation is the one presented in Thompson et al. (2003) that uses a

three-dimensional table in temperature (T ), density (!), and Ye.
At each point in the table the specific internal energy, the
pressure (P), the entropy per baryon (s), and compositional
information are stored. Using integer arithmetic to find nearest
neighbor points for a given set of !, T, and Ye, the need for time-
consuming search algorithms has been eliminated. Given !, T,
and Ye, the code performs three six-point bivariant interpola-
tions in the T-! planes nearest to and bracketing the given Ye
point. A quadratic interpolation is then executed between Ye
points to obtain the desired thermodynamic quantity. Since our
hydrodynamic routine updates specific internal energy, we
employ a Newton-Raphson/bisection scheme that iterates on
temperature at a fixed internal energy until the root is found to
within a part in 108.

The Lattimer-Swesty EOS extends down to only !5"
106 g cm#3, and its validity in this density regime is guaran-
teed only for fairly high temperatures, where the assumption
of nuclear statistical equilibrium (NSE) still holds. For cal-
culations involving lower densities, Thompson et al. (2003)
have coupled the Lattimer-Swesty EOS to the Helmholtz EOS
(Timmes & Arnett 1999; Timmes & Swesty 2000), which
contains electrons and positrons at arbitrary degeneracy and
relativity; photons, nuclei, and nucleons as nonrelativistic ideal
gases; and Coulomb corrections.

Fig. 3.—Initial angular velocity profiles of the rotating 15 (blue) and 20 (green) M$ progenitor models (see Table 1 for model parameters). The dotted red profiles
were generated with the rotation law of eq. (5) using the central ! of model e15 for !0. All realistic presupernova models exhibit near rigid rotation inside
’1000 km. Note the much smaller angular velocities exhibited by models m15b4 and m20b4, which were evolved with the inclusion of magnetic fields.
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~3-4 rad/s

~0.3 rad/s

magnetic braking

↑
1000km

Angular momentum distribution based 
on calculations of stellar evolution

ü Rotation of massive star core is 
unknown.

ü Theoretical （numerical） prediction.
Zwerger & Mu ̈ller ’97
Woosley & Weaver ’95
Heger+’00,’03.

M=15, 20 Mo, vini = 200 km/s

Nearly rigid rotation within ~1000km.

0.3（w/ B-field） - 3.0（w/o） rad/s.



Ω0 = 0.0
（non rot.）

Ω0 = 0.2
（slow rot.-1）

Ω0 = 0.4
（slow rot.-2）

Ω0 = 2.0
（rapid rot.）

ü s11.2 model with
different Ω0 [rad/s].

ü All models turns to 
shock expansion at 
~300 ms.

ü Ω0=2.0 model 
presents oblate 
structure just after 
core bounce.



ü s15.0 model with
different Ω0 [rad/s].

ü Non-rotating model 
does not explode.

ü Slowly rotating 
models successfully 
revive the shock.

ü Rapidly rotating 
model might 
explode.

Ω0 = 0.0
（non rot.）

Ω0 = 0.2
（slow rot.-1）

Ω0 = 0.4
（slow rot.-2）

Ω0 = 2.0
（rapid rot.）



s11.2 s15.0

Angle-averaged shock radius

Ω0=0.0
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Rotation strongly affects dynamics.
Shock revival time is not aligned 
with rotation speed.

The core of s11.2 progenitor is 
surrounded by dilute envelope.
→ Rotation effect is weak.



Neutrino luminosities and average energies
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Rapid rotation (Ω0 = 2.0 rad/s) reduces neutrino luminosity and average energy
up to ~20 %.



Summary & discussions

ü We have explored the systematic features of CCSN using ~400 

numerical models.

ü The compactness-observables correlation suggests that we could infer 

the progenitor structure (even before explosion).

ü The ratio Nacc./Ndiff. can be a good distance-independent indicator.

ü Additional neutrino flavor mixing beyond MSW,

ü Simulations should be in 3D including rotation, B-field, …

- 3D CCSN models from multiple progenitors are being available.

- (Very) rapid rotation affects neutrino properties.

ü Uncertainty in the nuclear physics → Nakazato-san’s talk.


