

XMASS

K. Hiraide (The University of Tokyo) January 8-9, 2018 第4回超新星ニュートリノ研究会@箱根

Outline

- XMASS experiment
- Supernova neutrino observation via coherent elastic neutrinonucleus scattering (CEvNS)
 - K. Abe et al. (XMASS Collaboration), Astropart. Phys. 89 (2017) 51-59
- Other searches for low-energy events originated from astronomical sources
 - Search for solar Kaluza-Klein axions
 - K. Abe et al. (XMASS Collaboration), PTEP 2017, 103C01 (2017)
 - Search for event bursts associated with gravitational-wave events

The XMASS project

- XMASS: a multi purpose experiment with liquid xenon
- Located 1,000 m underground (2,700 m.w.e.) at the Kamioka Observatory in Japan

• Aiming for

- Direct detection of dark matter
- Observation of low energy solar neutrinos (pp/⁷Be)
- Search for neutrino-less double beta decay

• Features

- Low energy threshold (~0.5keVee)
- > Sensitive to e/γ events as well as nuclear recoil
- Large target mass and its scalability

Single-phase liquid Xenon detector: XMASS-I

- Liquid xenon detector
 - 832 kg of liquid xenon (-100 °C)
 - 642 2-inch PMTs (Photocathode coverage >62%)
 - Each PMT signal is recorded by 10-bit 1GS/s waveform digitizers
- Water Cherenkov detector
 - 10m diameter, 11m high
 - 72 20-inch PMTs
 - Active shield for cosmic-ray muons
 - Passive shield for n/γ

History of XMASS-1

- Has been stably taking data for more than 4 years since November 2013.
- Will continue data-taking until December 2018.

Diversity of physics target with XMASS

Supernova neutrino observation via coherent elastic neutrinonucleus scattering

Supernova neutrino observation in XMASS

Coherent elastic neutrino-nucleus scattering

 $\nu_x + (A, Z) \rightarrow \nu_x + (A, Z)$

- Main channel of supernova neutrino events in XMASS.
- Sensitive to all neutrino flavors
- Nuclear recoil with energy below O(10keV)

Charged current neutrino-nucleus reactions

 $\nu_e + (A, Z) \rightarrow e^- + (A, Z + 1)$ $\overline{\nu}_e + (A, Z) \rightarrow e^+ + (A, Z - 1)$

- Possibility of detection in case of nearby supernova
- Electron scattering with energy of O(MeV) \rightarrow different from coherent scattering

Coherent elastic v-nucleus scattering (CEvNS)

 $\nu + A \rightarrow \nu + A$

- Neutrino is scattered off by all the nucleons in a nucleus coherently
 - Weak neutral current interaction
 - Cross section ~ N²
 - Recoil energy ~ O(10) keV

$$\frac{d\sigma}{dE_{\rm nr}}(E_{\nu}, E_{\rm nr}) = \frac{G_{\rm F}^2 M}{2\pi} G_{\rm V}^2 \left[1 + \left(1 - \frac{E_{\rm nr}}{E_{\nu}}\right)^2 - \frac{ME_{\rm nr}}{E_{\nu}^2} \right]$$
$$G_{\rm V} = \left[\left(\frac{1}{2} - 2\sin^2\theta_{\rm W}\right) Z - \frac{1}{2}N \right] F(q^2)$$

- Main mechanism of trapping neutrinos in the core of a supernova
- Ultimate background for direct dark matter searches (solar v, atm. v, and DSNB v)
- Has not been observed yet

Coherent elastic v-nucleus scattering (CEvNS)

Science

Cite as: D. Akimov et al., Science 10.1126/science.aao0990 (2017).

REPORTS

Observation of coherent elastic neutrino-nucleus scattering

D. Akimov,^{1,2} J. B. Albert,³ P. An,⁴ C. Awe,^{4,5} P. S. Barbeau,^{4,5} B. Becker,⁶ V. Belov,^{1,2} A. Brown,^{4,7} A. Bolozdynya,² B. Cabrera-Palmer,⁸ M. Cervantes,⁵ J. I. Collar,^{9*} R. J. Cooper,¹⁰ R. L. Cooper,^{11,12} C. Cuesta,¹³⁺ D. J. Dean,¹⁴ J. A. Detwiler,¹³ A. Eberhardt,¹³ Y. Efremenko,^{6,14} S. R. Elliott,¹² E. M. Erkela,¹³ L. Fabris,¹⁴ M. Febbraro,¹⁴ N. E. Fields,⁹[‡] W. Fox,³ Z. Fu,¹³ A. Galindo-Uribarri,¹⁴ M. P. Green,^{4,14,15} M. Hai,⁹§ M. R. Heath,³ S. Hedges,^{4,5} D. Hornback,¹⁴ T. W. Hossbach,¹⁶ E. B. Iverson,¹⁴ L. J. Kaufman,³|| S. Ki,^{4,5} S. R. Klein,¹⁰ A. Khromov,² A. Konovalov,^{1,2,17} M. Kremer,⁴ A. Kumpan,² C. Leadbetter,⁴ L. Li,^{4,5} W. Lu,¹⁴ K. Mann,^{4,15} D. M. Markoff,^{4,7} K. Miller,^{4,5} H. Moreno,¹¹ P. E. Mueller,¹⁴ J. Newby,¹⁴ J. L. Orrell,¹⁶ C. T. Overman,¹⁶ D. S. Parno,¹³ S. Penttila,¹⁴ G. Perumpilly,⁹ H. Ray,¹⁸ J. Raybern,⁵ D. Reyna,⁸ G. C. Rich,^{4,14,19} D. Rimal,¹⁸ D. Rudik,^{1,2} K. Scholberg,⁵ B. J. Scholz,⁹ G. Sinev,⁵ W. M. Snow,³ V. Sosnovtsev,² A. Shakirov,² S. Suchyta,¹⁰ B. Suh,^{4,5,14} R. Tayloe,³ R. T. Thornton,³ I. Tolstukhin,³ J. Vanderwerp,³ R. L. Varner,¹⁴ C. J. Virtue,²⁰ Z. Wan,⁴ J. Yoo,²¹ C.-H. Yu,¹⁴ A. Zawada,⁴ J. Zettlemoyer,³ A. M. Zderic,¹³ COHERENT Collaboration#

Coherent elastic neutrino-nucleus scattering was now observed !!

Supernova neutrino energy spectra used in the calculation

Nuclear recoil energy spectrum by supernova neutrinos

Expected supernova neutrino signal in XMASS

- In the case of supernova at 10 kpc,
 3.5-21 events are expected in 18 sec
 depending on the supernova models.
- For Betelgeuse (196 pc), ~10⁴ events are expected.

Expected time profile of supernova neutrino events in XMASS

Can discriminate models using time profile in the case of nearby supernova (~200pc)

Comprehensive observation network in Kamioka

- To compare the XMASS event timings with other detectors' events,
 - GPS time synchronization was introduced in the XMASS DAQ system.
- In the case of nearby supernovae (e.g. Betelgeuse), KamLAND has possibility to detect "pre-supernova neutrinos"
 - a few days before explosion.
 - XMASS is monitoring the semi-realtime pre-supernova alarm provided by KamLAND.
- XMASS is also waiting for a next supernova !!

Other searches for low-energy events originated from astronomical sources

Search for solar Kaluza-Klein axions

- In theories of large extra dimensions, axions could propagate in extra dimensions and acquire infinite number of mass levels.
 → Kaluza-Klein (KK) axions
- KK axions would be produced in the Sun via the Primakoff effect (γ +Ze \rightarrow Ze+a) and photon coalescence (γ + γ \rightarrow a).
- A small fraction are gravitationally trapped and accumulated in the solar system, and then decay into two photons $(a \rightarrow \gamma + \gamma)$.
- They might explain the solar corona problem.

Expected number density of trapped KK axions

Search for solar Kaluza-Klein axions

- In the terrestrial detectors, these KK axions can be detected through their decay $(a \rightarrow \gamma + \gamma)$ in the detector volume.
 - Total energy deposit ~9 keV
- The event rate modulates annually due to the change of distance between the Sun and the Earth.
 - ~14% change between max. and min.

Expected energy spectra of the KK axion decay

Expected KK axion number density on Earth

$$n_{a}(t) = \bar{n}_{a} \left(1 - e \cos \frac{2\pi (t - t_{0})}{T} \right)^{-4}$$
$$\approx \bar{n}_{a} \left[1 + 4e \left(\cos \frac{2\pi (t - t_{0})}{T} + \frac{5}{2}e \cos^{2} \frac{2\pi (t - t_{0})}{T} \right) \right]$$

Solar Kaluza-Klein axion results (1)

Expected KK axion signal spectra

No significant event rate modulation expected from solar KK axions was found

Black: the observed data w/ stat. error (red: sys. error) Blue solid: the best fit result Blue dash: the 90% CL upper limit (x20 enhanced)

Solar Kaluza-Klein axion results (2)

- The first experimental constraint on solar Kaluza-Klein axions.
- $g_{a\gamma\gamma} < 4.8 \times 10^{-12} \text{ GeV}^{-1}$ (for $n_a = 4.07 \times 10^{13} \text{ m}^{-3}$)
- Published in PTEP 2017, 103C01 (2017)

Search for event burst associated with gravitational-wave (GW) events

- Several GW events reported by LIGO/Virgo since 2015.
- The 1st binary neutron star (NS-NS) merger was observed by LIGO/Virgo and also by multi-messengers.
- There are some theoretical predictions on neutrino emission from NS-NS mergers.
- XMASS was taking data continuously during these GW events.
 - has capability to detect neutrinos (via CEvNS), axions, axion-like particles etc.

Search for event burst associated with GW events

- Apply simple event selections
 - Only inner detector trigger
 - PMT afterpulse rejection
 - Cherenkov event rejection
- Divide into 4 energy ranges
 - <~30 keV
 - 30-300 keV
 - 300-3000 keV
 - >~30000 keV
- Search for event burst by sliding coincidence windows with various time width (20 ms to 10 s)

Event rate in the +/-400 sec window of GW170817 (NS-NS merger)

- Relative time since Aug. 17 2017 12:41:04 UTC (=21:41:04 JST)
- 1bin = 10s

Local p-value in the +/-400 sec window of GW170817 (NS-NS merger)

24

Summary

- Thanks to low energy threshold and large target mass, XMASS has possibility to detect galactic supernova neutrinos via coherent elastic neutrino-nucleus scattering.
- The XMASS-I detector has been stably taking data for more than 4 years, and will continue data-taking until December 2018.
- Other searches for low energy events originated from astronomical sources are also being conducted.
 - Search for solar Kaluza-Klein axions
 - Search for event bursts associated with gravitational-wave events