Neutrino-Nucleus Reactions and Nucleosynthesis ニュートリノ-原子核反応と元素合成、

Toshio Suzuki Nihon University, NAOJ, Tokyo

Hakone Jan. 9, 2018 New shell-model Hamiltonians which describes the spin modes such as GT strength in nuclei very well -> New v-nucleus reaction cross sections

v-nucleus reactions: $E_v \le 100 \text{ MeV}$

- 1. $\nu^{-12}C$, $\nu^{-13}C$
- 2. v-¹⁶O
- 3. v-⁵⁶Fe, v-⁵⁶Ni
- 4. v- 40 Ar
- low-energy v-detection
 Scintillator (CH, ...), H₂O, Liquid-Ar, Fe
- nucleosynthesis of light elements in supernova explosion
- •v-oscillation effects

e-capture rates in stellar environments

pf-shell: nucleosynthesis of iron-group elements in Type Ia
 SNe

Collaborators

T. Kajino ^{a,b}, B. Balantekin^c, S. Chiba^d, T. Yoshida^b, M. Honma^e T. Umeda^b, K. Nomoto^f T. Otsuka^g

K. Mori^{a,b}, M. Famiano^j, J. Hidaka^k, K. Iwamoto^l,

^aNational Astronomical Observatory of Japan ^bDepartment of Astronomy, University of Tokyo ^cUniv. of Wisconsin ^dTokyo Institute of Technology ^eUniversity of Aizu ^fWPI, The University of Tokyo **gRIKEN** ^jWestern Michigan University ^kMeisei University ¹Department of Physics, Nihon University

• v-nucleus reactions

1. $v^{-12}C$, $v^{-13}C$: SFO (p-shell)

- 2. v-¹⁶O: SFO-tls, YSOX (p +p-sd shell)
- 3. v-56Fe, v-56Ni: GXPF1J (pf-shell)
- 4. v-⁴⁰Ar: VMU (monopole-based universal interaction) +SDPF-M +GXPF1J (sd-pf)

Suzuki, Fujimoto, Otsuka, PR C69, (2003), Yuan, Suzuki, .. PRC85 (2012)

Honma, Otsuka, Mizusaki, Brown, PR C65 (2002); C69 (2004)

Suzuki, Honma et al., PR C79, (2009)

Otsuka, Suzuki, Honma, Utsuno et al., PRL 104 (2010) 012501

Suzuki and Honma, PR C87, 014607 (2013)

Yuan, Suzuki, Otsuka et al., PR C85, 064324 (2012)

* important roles of tensor force

Monopole terms of V_{NN}
$$\mathbf{V}_{\mathbf{M}}^{\mathrm{T}}(\mathbf{j}_{1}\mathbf{j}_{2}) = \frac{\sum_{\mathbf{J}} (2\mathbf{J}+1) < \mathbf{j}_{1}\mathbf{j}_{2}; \mathbf{J}\mathbf{T} | \mathbf{V} | \mathbf{j}_{1}\mathbf{j}_{2}; \mathbf{J}\mathbf{T} > \sum_{\mathbf{J}} (2\mathbf{J}+1)$$

 $j_> - j_<$: attractive

 $j_{>} - j_{>}, j_{<} - j_{<}$: repulsive Otsuka, Suzuki, Fujimoto,

Monopole terms: New SM interactions vs. microscopic G matrix

Proper shell evolutions toward drip-lines: Change of magic numbers

HT: Hayes-Towner, PR C62, 015501 (2000) CRPA: Kolb-Langanke-Vogel, NP A652, 91 (1999)

Coherent (elastic) scattering on light target Neutral current $A^{s}_{\mu} = V^{s}_{\mu} = 0$ $J^{(0)}_{\mu} = A^{3}_{\mu} + V^{3}_{\mu} - 2\sin^{2}\theta_{W}J^{\gamma}_{\mu}$ Vector part: $V^{(0)}_{\mu} = V^{3}_{\mu} - 2\sin^{2}\theta_{W}J^{\gamma}_{\mu}$ C0: $(G^{IV}_{E} - 2\sin^{2}\theta_{W}G_{E}) < g.s. | j_{0}(qr)Y^{(0)} | g.s. >$ $<=>\frac{1}{2}G^{p}_{E}(1 - 4\sin^{2}\theta_{W})\rho_{p}(r) - \frac{1}{2}G^{p}_{E}\rho_{n}(r)$ $(G^{n}_{E} \approx 0)$ $=-\frac{1}{2}G^{p}_{E}\{\rho_{n}(r) - 0.08\rho_{p}(r)\}$ $(\sin^{2}\theta_{W} = 0.23)$

Probe of neutron density distribution

Patton, Engel, MacLaghlin, Schunck, PRC 86, 024612 (2012)

$$\frac{d\sigma}{dT}(E,T) = \frac{G_F^2}{2\pi} M\{2 - \frac{MT}{E^2}\} \frac{Q_W^2}{4} F^2(Q^2)$$
 T=recoil energy

$$Q_W = N - (1 - 4\sin^2\theta_W)Z$$

$$F(Q^2) = \{NF_n(Q^2) - (1 - 4\sin^2\theta_W)ZF_p(Q^2)\}/Q_W$$

$$Q^2 = 2E^2TN/(E^2 - ET)$$

CRPA: Kolbe, Langanke & Vogel, PR D66 (2002)

¹⁶O Neutral current reactions ¹⁶O 0⁻

$$\frac{\sigma({}^{16}O(\nu,\nu'\alpha p){}^{11}B)}{\sigma({}^{12}C(\nu,\nu'p){}^{11}B)} \approx 20\%$$

Production yields of ¹¹B and ¹¹C (10⁻⁷M $_{\odot}$)

	$15 M_{\odot}$ モデル			$20 M_{\odot}$ モデル		
核種生成量	${\rm Case}\ 1$	Case 2	Case 3	${\rm Case}\ 1$	Case 2	Case 3
$M(^{11}B)$	2.94	2.92	3.13	6.77	6.58	7.66
$M(^{11}C)$	2.80	2.71	3.20	9.33	8.91	9.64
$M(^{11}\mathrm{B}{+}^{11}\mathrm{C})$	5.74	5.62	6.33	16.10	15.49	17.29

T. Yoshida

Case1: previous branches used in ${}^{16}O(\gamma, n, p, \alpha\text{-emissions})$ and HW92 cross sections Case2: previous branches, and new cross sections Case3: multi-particle branches and new cross sections

- v- ⁵⁶Ni reactions and synthesis of ⁵⁵Mn
- New shell-model Hamiltonains in pf-shell

GXPF1: Honma, Otsuka, Mizusaki, Brown, PR C65 (2002); C69 (2004)

- **KB3:** Caurier et al, Rev. Mod. Phys. 77, 427 (2005)
- **O** KB3G A = 47-52 KB + monopole corrections
- **O** GXPF1 A = 47-66
- Spin properties of fp-shell nuclei are well described

Suzuki et al., PR C79 (2009) OBS: Cayrel et al., Astron. Astrophys. 416 (2004)

	[Mn/Fe]
No v	-0.53
HW02	-0.29
GXPF1J(GT)	-0.25
GXPF1J(all)	-0.19

Yoshida, Umeda, Nomoto

 58 Ni(p, γ) 59 Cu(e⁻, ν) 59 Ni(e⁻, ν) 59 Co

• v- ⁴⁰Ar reactions

Liquid argon = powerful target for SNv detection

sd-pf shell: 40 Ar (v, e⁻) 40 K (sd)⁻² (fp)² : 2hw SDPF-VMU-LS sd: SDPF-M (Utsuno et al.) fp: GXPF1 (Honma et al.) sd-pf: VMU + 2-body LS

•pf-shell: GT strength in ⁵⁶Ni: GXPF1J vs KB3G vs KBF

KBF: Table by Langanke and Martinez-Pinedo,

At. Data and Nucle. Data Tables 79, 1 (2001)

- fp-shell nuclei: KBF Caurier et al., NP A653, 439 (1999)
- •Experimental data available are taken into account: Experimantal Q-values, energies and B(GT) values available
- Densities and temperatures at FFN (Fuller-Fowler-Newton) grids:

Type-Ia SNe and synthesis of iron-group nuclei

Accretion of matter to white-dwarf from binary star

- \rightarrow supernova explosion when white-dwarf mass \approx Chandrasekhar limit \rightarrow ⁵⁶Ni (N=Z)
- $\rightarrow {}^{56}\text{Ni}(e^-, \nu) {}^{56}\text{Co} \quad Y_e = 0.5 \rightarrow Y_e < 0.5 \text{ (neutron-rich)}$
- \rightarrow production of neutron-rich isotopes; more ⁵⁸Ni

Decrease of e-capture rate on ${}^{56}Ni \rightarrow less$ production of ${}^{58}Ni$ and larger Y_e

Problem of over-production of neutron-excess iron-group isotopes such as ⁵⁸Ni, ⁵⁴Cr ... compared with solar abundances

Iwamoto et al., ApJ. Suppl, 125, 439 (1999)

e-capture rates with FFN

(Fuller-Fowler-Newman)

Type-Ia SNe W7 model: fast deflagration WDD2: Slow deflagration + delayed detonation

Initial: C-O white dwarf, $M=1.0M_{\odot}$ central; $\rho_9=2.12$, $T_c=1x10^7 K$

e-capture rates: GXP; GXPF1J ($21 \le Z \le 32$) and KBF (other Z)

GXP: WDD2 (slow deflagration + detonation)

Mori, Famiano, Kajino, Suzuki, Hidaka, Honma, Iwamoto, Nomoto, Otsuka, ApJ. 833, 179 (2016)

Summary

- New v –induced cross sections based on new shell-model Hamiltonians with proper tensor forces (SFO for p-shell, GXPF1 for pf-shell, VMU)
- •Good reproduction of experimental data for ¹²C (v, e⁻) ¹²N, ¹²C (v, v') ¹²C and ⁵⁶Fe (v, e⁻) ⁵⁶Co
- Effects of v-oscillations in nucleosynthesis abundance ratio of ⁷Li/¹¹B → v mass hierarchy inverted hierarchy vs. normal hierarchy
- New v capture cross sections on ¹³C by SFO Enhanced solar v cross sections compared to CK Detection of low-energy reactor anti-v
- New v capture cross sections on ¹⁶O by SFO-tls Production of ¹¹B by ¹⁶O(v, v'αp)¹¹B

- GXPF1J well describes the GT strengths in Ni isotopes : ⁵⁶Ni two-peak structure confirmed by recent exp.
- → 1. Accurate evaluation of e-capture rates at stellar environments
 - 2. Large p-emission cross section for ⁵⁶Ni and production of more ⁵⁵Mn in Pop. III stars
- VMU for sd-pf-shell: GT strength consistent with (p, n) reaction
 → new cross section for ⁴⁰Ar (v,e⁻) ⁴⁰K induced by solar v Suzuki and Honma, PR C87, 014607 (2013)

ONew weak rates for pf-shell from GXPF1J

Nucleosynthesis of iron-group elements in Type Ia Sne: GXPF1J gives smaller e-capture rates (cf. KBF, KB3G, FFN), and leads to larger Y_e with less neutron-rich isotopes, thus can solve the over-production problem in iron-group nuclei.