KamLAND

Koji Ishidoshiro (Tohoku Univ. RCNS)

Supernova neutrino workshop, 2018/1/8-9

Contents

- Status of SN monitor@KL
- New electronics for KL2
- Search for v from GW event Next talk

KamLAND detector

Kamioka Liquid scintillator Anti-Neutrino Detector (since 2002)

- 1,000 m depth (Kamioka mine)
- 1,000 t liquid scintillator Dodecane (80%), Psedocumene (20%), PPO (1.36g/l)
- 1,325 17inch + 554 20inch PMTs

Outer detector (for muon veto) - 3.2kton water cherenkov detector - ~100 20inch PMTs

SN monitor@KL

Inverse-beta decay -> DC event

SN monitor@KL

Monitor of Δt

Δt < 10sec => SNEWS

- 2.5 < Ep < 30MeV
- 1.8 < Ed < 2.6 MeV
 - or 4.4 < Ed < 5.6MeV
- R < 650cm
- dR < 200cm
- 0.5 < dt < 1000us

preSN monitor

Number of DC events in the past 48 hr (with likelihood selection)

Accident in the last year

Large significance (>5σ) from calibration (contact form SNO)

Alarm system: process with normal data

Ishidoshiro:

We do not need stop the SN monitor.

Someone:

It is useful to process with normal process. The monitor should be stopped. Let's use normal process with the calibration data

Accident in the last year

Large significance (>5σ) from calibration (contact form SNO)

Updates of system

Stop of alarm system Not use of normal process for calibration data

KamLAND2

Improvements of energy resolution for KL-Zen

Update of electronics and DAQ Improvements for nearby SNe Use of on-board memory and high speed readout Improvements for n-tag efficiency due to muon => Reduction of 10C background for KL2-Zen

KamLAND-Zen

Neutrino-less Double-beta decay search using ¹³⁶Xe loaded LS in a mini balloon

decane 80.2%, pseudocumene 19.8%, PPO 2.7g/l, Xe 2.4wt%

Detection

- Majorana neutrino
- Lepton number violation
- Heavy right-handed neutrino
 - Leptogenesis (Matter-dominated Universe)
 - Seesaw mechanism (light neutrino mass)

KamLAND-Zen

Neutrino-less Double-beta decay search using ¹³⁶Xe loaded LS in a mini balloon

decane 80.2%, pseudocumene 19.8%, PPO 2.7g/l, Xe 2.4wt%

Advantages of KamLAND-Zen

- running detector: start quickly

- pure LS & 9m radius active shield

U < 3.5 x10⁻¹⁸ g/g, Th < 5.2x10⁻¹⁷ g/g

high scalability replacement of a mini ballon off-measurement

UII-IIICasuleii

Why ¹³⁶Xe

- Good solubility to LS (3wt%)
- Chemically stable (easy to handle)
- Establishment of enrichment method
- Q-value is 2.46MeV -> Low BG region in KamLAND

Background in KL-Zen

Spallation ¹⁰C

¹⁰C reduction: n-tag is a key

Behavior of PMT after muon

Overshoot and after pulse

Approach

1. Update of PMT bleeder circuit

Approach

2. Differential hit detection

Approach

3. Use of local trigger with δt

($\delta t < \Delta t$; Δt is coincidence windows for global trigger)

Current n-tag efficiency

Improvement of efficiency

Summary

- SN monitor: working
- -preSN monitor: update to reduce false
- New electronics for KL2
 Updates for nearby SNe
 Improvements for n-tag efficiency

Data taking will stop for the Zen balloon installation. Data taking will continue during the SK tank open

