炭素、酸素核の構造とニュートリノ核反応への応用

Toshio Suzuki Nihon University, NAOJ, Tokyo

NITHON UNIVERSITY COLLEGE OF HUMANITIES AND SCIENCES

「地下素核研究」 超新星ニュートリノ研究会, NAOJ Jan. 8, 2019

v-detection

Scintillator (CH, ...), H₂O, Liquid-Ar, Fe v-¹²C, v- ¹³C, v-¹⁶O, v-⁵⁶Fe, v- ⁴⁰Ar $E_v < 100 \text{ MeV}$

v-oscillation effects \rightarrow v mass hierarchy MSW oscillations in SNe SN neutrino detection by v-¹²C and v-¹⁶O reactions

(MSW + collective oscillations)

v- ¹⁶O reactions Suzuki, Chiba, Yoshida, Takahashi, and Umeda, Phys. Rev. C98, 034613 (2018)

Neutrino oscillations in v-¹⁶O reactions Nakazato, Suzuki, and Sakuda, PTEP 2018, 123E02 (2018) • v-nucleus reactions with new shell-model Hamiltonians

- 1. $v^{-12}C$, $v^{-13}C$: **SFO** (p-shell; space p-sd)
- 2. v-¹⁶O: SFO-tls, YSOX (p +p-sd shell)
- 3. v-⁵⁶Fe, v-⁵⁶Ni: GXPF1J (pf-shell)
- 4. v-⁴⁰Ar: VMU (monopole-based universal interaction) +SDPF-M +GXPF1J (sd-pf)

Suzuki, Fujimoto, Otsuka, PR C69, (2003), Suzuki and Otsuka, PRC878 (2008)

Honma, Otsuka, Mizusaki, Brown, PR C65 (2002); C69 (2004)

Suzuki, Honma et al., PR C79, (2009)

Otsuka, Suzuki, Honma, Utsuno et al., PRL 104 (2010) 012501

Suzuki and Honma, PR C87, 014607 (2013)

Yuan, Suzuki, Otsuka et al., PR C85, 064324 (2012)

* important roles of tensor force

Monopole terms of
$$V_{NN}$$

$$V_{M}^{T}(\mathbf{j}_{1}\mathbf{j}_{2}) = \frac{\sum_{J} (2J+1) < \mathbf{j}_{1}\mathbf{j}_{2}; JT | V | \mathbf{j}_{1}\mathbf{j}_{2}; JT >}{\sum_{J} (2J+1)}$$

$$\mathbf{j}_{>} - \mathbf{j}_{<}: \text{ attractive}$$

 $j_{>} - j_{>}, j_{<} - j_{<}$: repulsive Otsuka, Suzuki, Fujimoto, Grawe, Al

Magnetic moments of p-shell nuclei

present = SFO space: up to 2-3 hw

0hw

2hw

CRPA: Kolb-Langanke-Vogel, NP A652, 91 (1999)

$$\begin{split} \text{Spin-dipole sum} \\ B(SD\lambda)_{\mp} &= \frac{1}{2J_i + 1} \sum_{f} | < f \parallel S^{\lambda}_{\mp} \parallel i > |^2 \\ S^{\lambda}_{\mp,\mu} &= r[Y^1 \times \vec{\sigma}]^{\lambda}_{\mu} t_{\mp} \end{split}$$

NEWS-rule: $S_{-}^{\lambda} - S_{+}^{\lambda} = \langle 0 \mid [\hat{S}_{-}^{\lambda}, \hat{S}_{+}^{\lambda}] \mid 0 \rangle = \frac{2\lambda + 1}{4\pi} (N \langle r^{2} \rangle_{n} - Z \langle r^{2} \rangle_{p})$

For ¹²C; N=Z

$$\begin{cases}
p_{3/2} \rightarrow \text{sd} \qquad [n(p_{3/2})=6, n(p_{1/2})=2] \\
\frac{3}{4\pi} \frac{20}{3} b^2 = 4.28 \text{ fm}^2, \qquad \lambda^{\pi} = 0^-, \quad \frac{3}{4\pi} \frac{34}{12} b^2 \\
\frac{3}{4\pi} \frac{20}{3} b^2 = 4.28 \text{ fm}^2, \qquad \lambda^{\pi} = 1^-, \quad \frac{3}{4\pi} \frac{39}{12} b^2
\end{cases}$$

$$S_{\lambda}(SD) = \sum_{\mu} |<\lambda,\mu| |S_{-,\mu}^{\lambda}| |0>|^{2} = \frac{1}{2} \begin{cases} \frac{5}{4\pi} 18b^{2} = 11.56 \text{ fm}^{2}, & \lambda^{\pi} = 1^{-}, & \frac{1}{4\pi} \frac{1}{12}b^{2} \\ \frac{3}{4\pi} \frac{70}{3}b^{2} = 14.98 \text{ fm}^{2}, & \lambda^{\pi} = 2^{-}, & \frac{3}{4\pi} \frac{155}{12}b^{2} \end{cases}$$

Energy-weighted sum

$$\begin{split} EWS_{\pm}^{\lambda} &= \sum_{..} |\langle \lambda, \mu | S_{\pm,\mu}^{\lambda} | 0 \rangle|^2 (E_{\lambda} - E_0), \\ EWS^{\lambda} &= EWS_{-}^{\lambda} + EWS_{+}^{\lambda} \\ &= \frac{1}{2} \langle 0 | [S_{-}^{\lambda^{\dagger}}, [H, S_{-}^{\lambda}]] + [[S_{+}^{\lambda^{\dagger}}, H], S_{+}^{\lambda}] | 0 \rangle . \end{split}$$

kinetic energy term (K) for $H = \frac{p^2}{2m}$ $EWS_K^{\lambda} = \frac{3}{4\pi} (2\lambda + 1) \frac{\hbar^2}{2m} A [1 + \frac{f_{\lambda}}{3A} < 0 \mid \sum \vec{\sigma}_i \cdot \vec{\ell}_i \mid 0 >]$ $f_{\lambda} = 2, 1 \text{ and } -1 \text{ for } \lambda^{\pi} = 0^{-}, 1^{-} \text{ and } 2^{-}, \text{ respectively.}$ One-body spin-orbit potential term $V_{LS} = -\xi \sum_i \vec{\ell}_i \cdot \vec{\sigma}_i$. $EWS_{LS}^{\lambda} = \frac{3}{4\pi} (2\lambda + 1) \frac{f_{\lambda}}{3} \xi < 0 \mid \sum_{i} (r_i^2 + g_{\lambda} r_i^2 \vec{\ell}_i \cdot \vec{\sigma}_i) \mid 0 > 0$ $g_{\lambda} = 1$ for $\lambda^{\pi} = 0^-$, 1^- and $g_{\lambda} = -7/5$ for $\lambda^{\pi} = 2^-$. For N=Z, EWS^{λ} = EWS^{λ}, and EWS²/5 < EWS¹/3 < EWS⁰ EWS-0- 1-2-48.0 116.6 117.2 MeV \cdot fm² [n(p_{3/2})=6, n(p_{1/2})=2] K+LS SFO 45.61 108.48 154.49 $[n(p_{3/2})=6.42, n(p_{1/2})=1.44]$ $E_{av} = EWS_{S}$ K+LS 26.39 22.01 14.13 MeV SFO 25.71 25.22 21.50

Hauser-Feshbach statistical model

Branching ratios for γ and particle emission channels (with multi-particle emission channels): γ , n, p, np (d), nn, pp, ³H (nnp), ³He (npp), α , α p, α n, α nn, α np, α pp, ... Isospin conservation is taken into account (S. Chiba)

¹²C Neutral current reactions ¹²C

Gamma

Spin-dipole sum $S_{\lambda}(SD) = \sum_{\mu} <\lambda, \mu S^{\lambda}_{-,\mu} 0 > ^{2} = \begin{cases} \\ \\ \\ \\ \\ \end{cases}$			$\begin{cases} \frac{3}{4\pi} 4b^2 = 2.99 \text{fm}^2 \ \lambda^{\pi} = 0^- & p \to \text{sd} \\ \frac{3}{4\pi} 12b^2 = 8.98 \text{fm}^2 \ \lambda^{\pi} = 1^- & \infty \ 2\lambda + 1 \\ \frac{3}{4\pi} 20b^2 = 14.96 \text{fm}^2 \ \lambda^{\pi} = 2^- \end{cases}$			
EWS ^λ K+LS SFO-tls (/(K+LS) SFO (/(K+LS)	0 ⁻ 56.4 73.0 (1.29) 76.1 (1.35)	1 144 173 175	- 4.1 3.2 (1.20) 5.0 (1.21)	2 ⁻ 155.9 246.5 (258.2 (MeV•fm² 1.58) 1.66)	
$\bar{E_{\lambda}} = EWS^{\lambda}_{-}/NEV$ SFO-tls SFO	$VS_{-}^{\lambda}, 0^{-}$ 24.5 25.8	1 ⁻ 25.1 25.2	2- 20.1 MeV 21.0			

Tensor interaction: attractive for 0⁻ and 2⁻. & repulsive for 1⁻

$$\begin{split} V_{T}(\boldsymbol{r}) &= F(r) \left\{ [\boldsymbol{\sigma}_{1} \times \boldsymbol{\sigma}_{2}]^{(2)} \times [r^{2}Y_{2}(\hat{r})]^{(2)} \right\}^{(0)}.\\ V_{T}(\boldsymbol{r}) &= F(r) \sum_{\lambda} \frac{\sqrt{4\pi}}{6} \left(\frac{10}{3} \right)^{1/2} \begin{cases} -2\sqrt{5} \\ \sqrt{15} \\ -1 \end{cases} \right\} \times \left\{ r_{1} [\boldsymbol{\sigma}_{1} \times Y_{1}(\hat{r}_{1})]^{(\lambda)} \right\}^{(\lambda)}\\ &\times r_{2} [\boldsymbol{\sigma}_{2} \times Y_{1}(\hat{r}_{2})]^{(\lambda)} \right\}^{(0)}, \quad \text{for } \lambda = \begin{cases} 0^{-} \\ 1^{-} \\ 2^{-} \end{cases}. \end{split}$$

μ-capture rate on ¹⁶O and the quenching factor

The muon capture rate for ¹⁶O (μ , ν_{μ}) ¹⁶N from the 1s Bohr atomic orbit $\omega_{\mu} = \frac{2G^2}{1 + \nu/M_T} |\phi_{1s}|^2 \frac{1}{2J_i + 1} (\sum_{J=0}^{\infty} |\langle J_f || M_J - L_J || J_i \rangle|^2 + |\langle J_f || T_J^{el} - T_J^{mag} || J_i \rangle|^2),$

$$|\phi_{1s}|^2 = \frac{R}{\pi} (\frac{m_{\mu} M_T}{m_{\mu} + M_T} Z \alpha)^3 \qquad R = 0.79$$

PCAC

Induced pseudo-scalar current $F_P(q_\mu^2) = \frac{2M_N}{q_\mu^2 + m_\pi^2} F_A(q_\mu^2)$ Goldberger-Treiman

$$-2M_{\rm N}F_{\rm A} = \sqrt{2}g_{\pi}F_{\pi}$$

f =
$$g_A^{eff}/g_A$$
 =0.95
SFO 10.21×10⁴ s⁻¹ (SFO/exp =0.995)
SFO-tls, 11.20×10⁴ s⁻¹ (SFO-tls/exp=1.092)
Exp. 10.26×10⁴ s⁻¹

E (MeV)

CRPA: Kolbe, Langanke & Vogel, PR D66 (2002)

¹⁶O Neutral current reactions ¹⁶O 0⁻

Case1: previous branches used
in ¹⁶ O (γ , n, p, α -emissions) and
HW92 cross sections
Case2: previous branches, and
new cross sections
Case3: multi-particle branches
and new cross sections

Production yields of ¹¹B and ¹¹C (10⁻⁷ M_{\odot})

	$15M_{\odot}$ モデル			20 M_{\odot} モデル		
核種生成量	${\rm Case}\ 1$	${\rm Case}\ 2$	Case 3	Case 1	${\rm Case}\ 2$	Case 3
$M(^{11}B)$	2.94	2.92	3.13	6.77	6.58	7.66
$M(^{11}C)$	2.80	2.71	3.20	9.33	8.91	9.64
$M(^{11}B+^{11}C)$	5.74	5.62	6.33	16.10	15.49	17.29
	T. Yoshida					

ν oscillation effects $\rightarrow \nu$ mass hierarchy

Charged current scattering off ¹⁶O nucleus as a detection channel of supernova neutrinos

(M, Z) =(20M_{\odot}, 0.02) Z = metalicity <E_v_e> = 9.32 MeV, <E_v_e> = 11.1 MeV, <E_v_x> =11.9 MeV

N(v_e) = P*N⁰(v_e) + (1-P)*N⁰(v_x) N(anti- v_e) = P'*N⁰(anti- v_e) + (1-P')*N⁰(v_x) N(anti- v_e) = P'*N⁰(anti- v_e) + (1-P')*N⁰(v_x)

Normal hierarchy: (P, P') = (0, 0.68) Dighe and Smirnov, PR D62, 033007 (2000) Inverted hierarchy: (P, P') = (0.32, 0)

	ordinary supernova			black hole formation		
reaction	no osc.	normal	inverted	no osc.	normal	inverted
$^{16}{\rm O}(\nu_{e}, e^{-}){\rm X}$	41	178	134	2482	2352	2393
${}^{16}\mathrm{O}(\bar{\nu}_e, e^+)\mathrm{X}$	36	58	103	1349	1255	1055
electron scattering	140	157	156	514	320	351
inverse β -decay	3199	3534	4242	17525	14879	9255
total	3416	3927	4635	21870	18806	13054

Table 6Expected event numbers with a threshold energy of $E_e = 5$ MeV for the modelsin Table 5.

Fig. 5 Same as Fig. 4 but for the model with $(M, Z) = (30M_{\odot}, 0.004)$, which corresponds to a black-hole-forming collapse.

First Detection of ⁷Li/¹¹B in SNgrains in Murchison Meteorite W. Fujiya, P. Hoppe, & U. Ott, ApJ 730, L7 (2011).

Bayesian analysis: Mathews, Kajino, Aoki and Fujiya, Phys. Rev. D85,105023 (2012).

Various roles of v's in SN-nucleosynthesis

Survival probabilities including collective effects for the scenario described in the text,

Scenario	Hierarchy	$\sin^2 \Theta_{13}$	$p(E < E_{split})$	$p(E > E_{split})$	<i>p̄</i> (Ε)	Earth effects
A B C D	Normal Inverted Normal Inverted	$\gtrsim 10^{-3}$ $\gtrsim 10^{-3}$ $\lesssim 10^{-5}$ $\lesssim 10^{-5}$	0 $\sin^2 \Theta_{\odot}$ $\sin^2 \Theta_{\odot}$ $\sin^2 \Theta_{\odot}$	0 0 sin ² Ø _© 0	$\cos^2 \Theta_{\odot}$ $\cos^2 \Theta_{\odot}$ $\cos^2 \Theta_{\odot}$ 0	ν _e ν _e ν _e and ν _e

Cross sections folded over	er the spectra	
• Target = ${}^{13}C$	$\langle E_{v} \rangle = 10, \langle E_{\bar{v}} \rangle$	$= 14$ and $\langle E_{y_{\rm e}} \rangle = 18$ MeV.
$E_v \leq 10 MeV E_v^{th}(^{12}C) \approx 13 MeV$		(x ,
Natural isotope abund. = 1.07%	A (normal)	B (inverted)
no oscillation	8.01	8.01 (10^{-42}cm^2)
collective osc.	8.01 39.44	39.44 (39.93)
collective +MSW	39.31 <mark>8</mark>	39.35 (39.53)
• Target = 48 Ca Q(48 Ca- 43	$^{8}Sc) = 2.8 \text{ MeV } E(1)$	$1^+; {}^{48}Sc) = 2.5 \text{ MeV}$
	A (normal)	B (inverted)
no oscillation	73.56	73.56 (10^{-42}cm^2)
collective osc.	73.56 303.4	303.4
collective +MSW	302.6 73	302.8

Cross sections are enhanced by oscillations. E_{split} is too small to distinguish the v-mass hierarchy in case of Collect.+MSW oscillations (): $E_{split} = 15 \text{ MeV}$

Summary

- 1. $v^{-12}C$ GT + SD shell-model with SFO
 - $v^{-16}O$ SD shell-model with SFO-tls
 - Partial cross sections for particle and γ emission channels with Hauser-Feshbach statistical model
 - Synthesis of ¹¹B: ¹²C (ν, ν'p) ¹¹B, ¹⁶O (ν, ν'αp) ¹¹B
 ¹¹C: ¹²C(ν, e⁻p) ¹¹C, ¹⁶O (ν, e⁻αp) ¹¹C
- 2. MSW v oscillation effects
 Mass hierarchy dependence:
 Production ratio of ¹¹B/⁷Li in SNe
 Cross sections of ¹⁶O (v, e⁻) X and ¹⁶O (v̄, e⁺) X

MSW+collective oscillations

Collaborators

S. Chiba^a, T. Yoshida^b, K. Nakazato^c, M. Sakuda^d, T. Kajino ^{b,e}, T. Otsuka^f, M. Honma^g, B. Balantekin^h, K. Takahashiⁱ, H. Umeda^b

^aTokyo Institute of Technology
^bThe University of Tokyo
^cKyushu Univ.
^dOkayama Univ.
^eNational Astronomical Observatory of Japan
^fRIKEN
^gUniversity of Aizu
^hUniv. of Wisconsin
ⁱUniv. Bonn