中性子星合体とrプロセス元素合成

Neutron star mergers and r-process nucleosynthesis

田中雅臣 (東北大学) Masaomi Tanaka (Tohoku University)

チュートリアルの目標

● rプロセス元素合成

- 天文観測からの要請:何がゴールか?
- 基礎物理過程と起源天体の候補

● 中性子星合体

- 中性子星合体におけるrプロセス元素合成
- 「キロノバ」:rプロセスによる突発天体現象

● 重力波天体の観測

- rプロセスに関して何がどこまで分かったか?
- 何が分かっていないか

- 天文月報 2014年1-2月 rプロセス特集
 和南城 (rプロセス全般)、田中 (キロノバ)、
 西村・滝脇 (超新星)、青木 (天文観測)、
 本田 (天文観測)、石丸 (銀河の化学進化)
- 物理学会誌 2018年9月中性子星合体GW170817特集
 新井(重力波)、柴田(中性子星合体)、田中(キロノバ)
- Thielemann et al. 2018, Annual Review of Nuclear and Particle Science, 67, 253-274 (arXiv:1710.02142) (天文観測、rプロセス、中性子星合体)
- Arnould et al. 2007, Physics Reports, 450, 97-213 (天文観測、rプロセス、原子核物理、超新星)

チュートリアルの目標

● rプロセス元素合成

- 天文観測からの要請:何がゴールか?
- 基礎物理過程と起源天体の候補

● 中性子星合体

- 中性子星合体におけるrプロセス元素合成
- 「キロノバ」:rプロセスによる突発天体現象

• 重力波天体の観測

- rプロセスに関して何がどこまで分かったか?
- 何が分かっていないか

Cosmic abundances (atomic number)

*mass fraction

Th	The origin of elements																
1 H	Big bang						Platinum Gold									² He	
3 Li	⁴ Be											5 B	6 	7 N	8 ()	9 F	10 Ne
11 Na	12 Ma	Insi	ide	star	s, si	upe	rnov	vae				13 A	14 Si	15 P	16 S	17 C	18 Ar
19 K	²⁰ Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	²⁶ Fe	27 Co	28 NIi	2) Cu	³⁰ Zn	³¹ Ga	³² Ge	33 As	³⁴ Se	35 Br	36 Kr
³⁷ Rb	38 Sr	39 Y	⁴⁰ Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
55 CS	56 Ba	^{57~71} La-Lu	72 Hf	⁷³ Ta	74 W	⁷⁵ Re	76 Os	77 Ir	⁷⁸ Pt	⁷⁹ Au	⁸⁰ Hg	81 TI	⁸² Pb	⁸³ Bi	⁸⁴ Po	⁸⁵ At	⁸⁶ Rn
87 Fr	⁸⁸ Ra	89~103 Ac-Lr	¹⁰⁴ Rf	105 Db	106 Sg	¹⁰⁷ Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Nh	114 FI	115 Mc	116 Lv	117 Ts	118 Og
			⁵⁷	⁵⁸ Ce	⁵⁹ Pr	60 Nd	⁶¹ Pm	⁶² Sm	⁶³ Eu	64 Gd	⁶⁵ Tb	66 Dy	67 Ho	68 Er	⁶⁹ Tm	70 Yb	71 Lu
			⁸⁹ Ac	⁹⁰ Th	⁹¹ Pa	92 U	⁹³ Np	⁹⁴ Pu	⁹⁵ Am	96 Cm	97 B k	⁹⁸ Cf	99 Es	100 Fm	¹⁰¹ Md	102 No	103 Lr

Neutron-capture nucleosynthesis

s (slow)-process

Inside of stars ${}^{13}C+{}^{4}He \rightarrow {}^{16}O+n$

r (rapid)-process

Au, Pt, U, ... ??

s-process in evolved low-mass stars (asymptotic giant branch)

First evidence Tc (Z = 43, no stable isotope) (Merrill 1952)

Lugaro+16

Chart of nuclides

天文学辞典 http://astro-dic.jp

Cosmic abundances (mass number)

"Universality" of r-process abundances

Sneden+2008

=> (Probably) single origin

Conditions for r-process (1)

Neutron capture rate >> **Beta decay rate**

 $n_n >> 10^{20} \text{ cm}^{-3}$ ($n_n \sim 10^{5-7} \text{ cm}^{-3} \text{ in s-process}$)

High neutron density (& rapid change of the system) => Explosive phenomena near the neutron star

Explosive phenomena near the neutron star

Core-collapse supernova

Moderately neutron rich Ye ~ 0.45 (n_n ~ 1.2n_p)

NS merger

Very neutron rich Ye ~ 0.10 (n_n ~ 9 n_p)

$$Y_e = \frac{n_e}{n_p + n_n} = \frac{n_p}{n_p + n_n}$$

n_n = n_p for Ye = 0.50

Core-collapse supernovae

Wanajo+11, Wanajo 14

 $v_e + n \rightarrow p + e^ \bar{v}_e + p \rightarrow n + e^+$

 $\epsilon_{\bar{\nu_e}} > \epsilon_{\nu_e}$

See Takiwaki-san's and Nakamura-san's Talks for more details

Probably neutron rich but only moderately Ye ~ 0.45 (n_n ~ 1.2n_p)

Neutron star merger

Top view

Side view

Sekiguchi+15, 16

Very neutron rich (Composition of neutron star Ye ~ 0.10 (n_n ~ 9 n_p)

Conditions for r-process (2)

High n/seed ratio after step (B)

$$A_{\text{final}} = A_{\text{seed}} + n/\text{seed}$$
~200 ~50-100

High neutron abundance (low Ye) <= Neutron star merger or Low seed abundance <= Supernovae (neutrino driven wind)

50

Low Ye

$$Y_e = \frac{n_e}{n_p + n_n} = \frac{n_p}{n_p + n_n}$$

(ex) Ye = 0.1 ($n_n \sim 9 n_p$)

1 seed ⁵⁶Ni (Z = 28, N = 28) + ~200 free neutron => n/seed ~ 200

Moderate Ye but high entropy (+ rapid expansion)

$$s \propto T^3 / \rho$$

entropy/baryon (radiation dominated)

High temperature => preference for n, p, alpha Low density => alpha remains at step (B) => low seed abundance

(B) Breakdown of NSE (w/ high entropy) = "alpha-rich" freeze-out

Bottle neck reactions (inefficient at low density)

$$\alpha + \alpha + n \rightarrow {}^{9}Be$$

 ${}^{9}Be + \alpha \rightarrow {}^{12}C + n$

Thielemann+18

(C) Neutron capture (and beta decay)

 $n + (Z, A) \leftrightarrow (Z, A + 1) + \gamma$

Arnould+07

Arnould+07

Constraints from the total amount in our Galaxy

See Tsujimoto-san's talk for more details

Rosswog+17, Hotokezaka+15, 18

まとめ (1/3): rプロセス元素合成

- 宇宙の元素組成
 - sプロセス、rプロセスの両方が必要
 - rプロセスの元素組成パターンは「ユニバーサル」
 - 必要な産出量 10⁻⁴ Msun/Gal/100 yr = 10⁻² Msun/Gal/10⁴ yr
- rプロセス元素合成と起源天体の候補
 - 高い中性子密度 => 中性子星に関連した天体現象
 - 高いn/seed比 => 中性子過剰、高エントロピー
 - 中性子星合体:非常に中性子過剰
 - 超新星爆発 (ニュートリノ風): それなりに中性子過剰&高エントロピー (難しいか?)

チュートリアルの目標

● rプロセス元素合成

- 天文観測からの要請:何がゴールか?
- 基礎物理過程と起源天体の候補

● 中性子星合体

- 中性子星合体におけるrプロセス元素合成
- 「キロノバ」:rプロセスによる突発天体現象

• 重力波天体の観測

- rプロセスに関して何がどこまで分かったか?
- 何が分かっていないか

Mass ejection from NS merger

Top view

Side view

Sekiguchi+15, 16

Tidal disruptionShock heating

M ~ 10⁻³ - 10⁻² Msun v ~ 0.1 - 0.2 c

0.09 0.14 0.19 0.24 0.34 0.44

r-process nucleosynthesis in the ejecta of NS mergers

s [k_B] Ye s [k 0.1 0.2 0.3 0.4 0.5 10 20 50 100 Side view 1000 Z [km] 500 Top view 1000 500 Y [km] 0 -500 -1000 500 1000 -1000 -500 0 X [km] Sekiguchi+16

Mej ~ 10⁻³ - 10⁻² Msun v ~ 0.1-0.2 c Low Ye (wide distribution)

Post-merger ejecta (~< 100 ms)

Mej >~ 10⁻² Msun v ~ 0.05 c Relatively high Ye

Dynamical ejecta (~< 10 ms)

Radioactive decay luminosity

Radioactive decay luminosity

917

Radioactive decays of r-process nuclei "heat up" the ejected material

β decay

- γ-rays (~ 1 MeV) => Compton scat. & photo-absorption
- β particles (~1 MeV) => ionization/excitation

α decay

- α particles (~7 MeV) => ionization/excitation

Fission

- fission fragments (~100 MeV) => ionization/excitation

UV/optical/infrared photons interact with matter mainly via bound-bound transitions

"Kilonova/Macronova"

Initial works: Li & Paczynski 98, Kulkarni 05, Metzger+10, Goriely+11, ... High opacity: Kasen+13, Barnes & Kasen 13, MT & Hotokezaka 13, ...

Lpeak

Tpeak

Temperature ~ 5000 K => Optical and infrared wavelengths

Radiation transfer simulations of kilonova

(MT & Hotokezaka 13, MT+14, MT 16)

Light curves of kilonova

Kasen+13, Barnes & Kasen 13, MT & Hotokezaka 13

L ~ 10⁴⁰-10⁴¹ erg s⁻¹ t ~ weeks NIR > Optical

Model: MT+17a

Number of state for a given I (1 electron) (different combinations of m_l and m_z)

g = 2 (l = 0, s shell) g = 6 (l = 1, p shell) g = 10 (l = 2, d shell) g = 14 (l = 3, f shell)

Number of state per configuration (n electrons)

$$_{g}C_{n} = \frac{g!}{n!(g-n)!}$$

(ex) Si I: $1s^2 2s^2 2p^6 3s^2 3p^2$ ${}_{6}C_2 = 15$ Fe I: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^6$ ${}_{10}C_6 = 219$ Nd I: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 4d^{10} 5s^2 4f^4$ ${}_{14}C_4 = 1001$

Atomic structure calculations for b-b transitions

Nd I-III (Z=60, f)

Er I-III (Z=68, f)

Ion	Configurations	Number of levels	Number of lines
Nd I	4f⁴6s² , 4f⁴6s (5d , 6p , 7s), 4f⁴5d² , 4f⁴5d6p , $4f^{3}5d6s^{2}$, $4f^{3}5d^{2}(6s, 6p)$, $4f^{3}5d6s6p$	31,358	70,366,259
Nd II	$4f^46s, 4f^45d, 4f^46p, 4f^36s(5d, 6p),$	$6,\!888$	$3,\!951,\!882$
	$4f^35d^2, 4f^35d6p$		
Nd III	$\mathbf{4f^4}, 4f^3(5d, 6s, 6p), 4f^25d^2, 4f^25d(6s, 6p),$	2252	458,161
Б -	$4f^{2}6s6p$	10 505	
Er l	$41^{-2}65^{-2}, 41^{-2}68(5d, 6p, 6d, 7s, 8s),$ $4f^{11}6s^{2}(5d, 6p), 4f^{11}5d^{2}6s, 4f^{11}5d^{6}s(6p, 7s)$	10,535	9,247,777
Er 11	4 f^{12} 6 s , $4f^{12}$ (5 d , 6 p), $4f^{11}$ 6 s^{2} , $4f^{11}$ 6 s (5 d , 6 p), $4f^{11}$ 5 d^{2} , $4f^{11}$ 5 $d6p$	5,333	$2,\!432,\!665$
Er III	$4f^{12}, 4f^{11}(5d, 6s, 6p)$	723	$42,\!671$

MT, Kato, Gaigalas+18

Bound-bound opacity

MT, Kato, Gaigalas+18

Little (or no) production of Lanthanide if Ye ~> 0.25

MT, Kato, Gaigalas+18

Nucleosynthesis is imprinted in the spectra

MT+18

The origin of heavy (r-process) elements

まとめ (2/3): 中性子星合体とキロノバ

● 中性子星合体

- Dynamical ejecta: Ye低い (赤道面) Ye高い (上空方向)
- Post-merger ejecta: Ye高い (ニュートリノの効果)
- キロノバ
 - rプロセス元素の放射性崩壊による電磁波放射
 - $L \sim 10^{40-41} \text{ erg/s}$, $T \sim 5000 \text{ K}$, timescale \sim week
 - Low Ye 赤外線 > 可視光 (ランタノイド元素の性質)
 - High Ye 可視光線 > 赤外線
 - 重力波 => event rate、電磁波 => 放出量 (+ Ye)

チュートリアルの目標

● rプロセス元素合成

- 天文観測からの要請:何がゴールか?
- 基礎物理過程と起源天体の候補

● 中性子星合体

- 中性子星合体におけるrプロセス元素合成
- 「キロノバ」:rプロセスによる突発天体現象
- 重力波天体の観測
 - rプロセスに関して何がどこまで分かったか?
 - 何が分かっていないか

2017 Aug 17

GW170817: The first detection of GWs from a NS merger

LIGO Scientific Collaboration and Virgo Collaboration, 2017, PRL

Skymap from 3 detectors (LIGO x 2 + Virgo) ==> 30 deg² (~40 Mpc)

LIGO Scientific Collaboration and Virgo Collaboration, 2017

Coulter+17, Soares-Santos+17, Valenti+17, Arcavi+17, Tanvir+17, Lipunov+17

Movie: Utsumi, MT+17, Tominaga, MT+18

Electromagnetic counterpart of GW170817 @ 40 Mpc

Day 1

Day 7

Optical (z) near IR (H) near IR (Ks)

Utsumi, MT+17

GW170817: optical/infrared light curves

Arcavi+17, Cowperthwaite+17, Diaz+17, Drout+17,Evans+17, Kasliwal+17,Pian+17, Smartt+17, Tanvir+17, Troja+17, Utsumi, MT+17, Valenti+17

Signature of lanthanide elements Ejecta mass ~0.03 Msun (w/ ~1% of lanthanides)

Bolometric light curves

Heating rate ~ t^{-1.3}

Kasliwal+17

GW170817: Spectra

- Smooth spectra (high velocity)

 Not similar to known transients

Andreoni+17, Chornock+17, Kilpatrick+17 McCully+17, Nicholl+17, Pian+17, Shappee+17, Smartt+17

Prese

Signature of lighter r-process elements

Constraints from the total amount in our Galaxy

See Tsujimoto-san's talk for more details

Rosswog+17, Hotokezaka+15, 18

まとめ (3/3): 重力波天体の観測

- GW170817のマルチメッセンジャー観測から分かったこと
 - キロノバ (L~t^{-1.3}) => rプロセス元素合成
 - 「赤い」キロノバ => ランタノイド元素の合成
 - 「青い」キロノバ => ランタノイドより軽い元素の合成
 - ・
 が出量 x rate => 今のところOK (不定性が大きい)
- 分かっていないこと
 - どの元素がどれぐらいできたか?
 太陽組成比に似ている?(「ユニバーサル」)
 - 超新星は不要?

Which elements are produced? (similar to solar abundances??)

GW170817: Spectra

- Smooth spectra (high velocity)

 Not similar to known transients

Andreoni+17, Chornock+17, Kilpatrick+17 McCully+17, Nicholl+17, Pian+17, Shappee+17, Smartt+17

Approach from atomic physics

Possible element features In the spectra?? => Not conclusive yet (lack of atomic data)

GW170817 Model Kasen et al. 2017 +4.5 d red kilonova model Å⁻¹) 6 $M = 0.04 M_{\odot}$ ⊕ f_{λ} (10^{-17} erg $cm^{-2}~s^{-1}$ v = 0.1c5 $X_{\text{lanthanide}} = 10^{-2}$ 3 Obs 2 1.2 1.0 1.6 1.8 1.4 Rest Wavelength (microns)

Chornock+17

Status of atomic calculations

Approach from nuclear physics

Late-time follow-up in mid infrared (4 um)

steeper than t^{-1.3}

Dominated by several isotopes in the 3rd peak? (Ye ~ 0.1-0.2)

Caveat: not total (bolometric) luminosity

Kasliwal+18

Approach from nuclear physics

Wanajo 18, Wu+18, Zhu+18

Lighter r-process elements

Fission of heaviest elements

No need for supernovae??

See Tsujimoto-san's talk for chemical evolution of the Universe

r-process in magneto-rotational supernovae

Successful r-process if explosion occurs early enough (depends on magnetic field/rotation)

r-process in "collapsar" (torus around BH => disk wind)

チュートリアルの目標

● rプロセス元素合成

- 天文観測からの要請:何がゴールか?
- 基礎物理過程と起源天体の候補

● 中性子星合体

- 中性子星合体におけるrプロセス元素合成
- 「キロノバ」:rプロセスによる突発天体現象

● 重力波天体の観測

- rプロセスに関して何がどこまで分かったか?
- 何が分かっていないか