

2015/05/15 「宇宙の歴史をひもとく地下素粒子原子核研究」 2015年領域研究会

3次元超新星モデルからのニュートリノ予測

Supernovae: the death of the star

Q:How does the explosion occur?

Supernovae and Neutrino Signal

v signals have the answer. GW are also important.

Goal of my research plan

Prediction of v signals and giving clue to decode the v signals.

Story of my talk

- 1. Dynamics of Supernovae in 1D model
- 2. Information from ν light curve(DC component)
- 3. Dynamics of Supernovae in 3D model
- 4. Information from ν light curve(AC component)
- 5. If the star rotates rapidly, then.

Above gain radius, the heating is dominant.

Shock and Entropy

Entropy: T^3/ρ

It's a good measure for the shock.

At the shock, kinetic energy is converted to heat and temperature increases(i.e. entropy also increases.)

Key aspects of Neutrino Mechanism

Story of my talk

- 1. Dynamics of Supernovae in 1D model
- 2. Information from ν light curve(DC component)
- 3. Dynamics of Supernovae in 3D model
- 4. Information from ν light curve(AC component)
- 5. If the star rotates rapidly, then.

Extract mass accretion history

O' Connor and Ott 2012

11

Mass accretion vs neutrino heating

爆発する! (1) 観測のイベント数をニュート リノ光度に焼きなおす クリティカルカーブ Neutrino Luminosity (2)得られたニュートリノ光度と シミュレーション結果のカタログ を比較して、似た親星のデータ を選び出す。 (3)爆発した(しなかった)星の 質量降着率とルミノシティの情 報が分かり、観測からクリティカ ルカーブの情報を得ることがで 爆発に失敗、BHになる きる。 Mass accretion rate 概念は上記の通り、だが変数選び等で は、まだ改善の余地がある。

Story of my talk

- 1. Dynamics of Supernovae in 1D model
- 2. Information from ν light curve(DC component)
- 3. Dynamics of Supernovae in 3D model
- 4. Information from ν light curve(AC component)
- 5. If the star rotates rapidly, then.

Typical 1D simulation

Problem

Supernova shock in simulation tends to stall and does NOT explode.

Long-lasting Problem ~1980. In 2000-2005, state-of-the-art simulations with detailed neutrino transport confirm that!

(Liebendoerfer+2001, Rampp+2002, Thompson+2003 and Sumiyoshi+2005)

(in 1D)Neutrino heating < ram pressure=> fails to explode!

From 1D to 3D

Key aspects of Neutrino Mechanism

With convection hot water at the bottom is transported near the cap. The pressure at the cap become higher. Explosion occurs with the process. Takiwaki+2012,2014, in prep

18

Shape of the explosion?

Many hot bubble is observed.

That is evidence of strong convection.

SASI (Standing Accretion Shock Instability) Scheck+ 2008

Advective-acoustic cycle From Foglizzo's slides

Standing Accretion Shock Instability(SASI)

Story of my talk

- 1. Dynamics of Supernovae in 1D model
- 2. Information from ν light curve(DC component)
- 3. Dynamics of Supernovae in 3D model
- 4. Information from ν light curve(AC component)
- 5. If the star rotates rapidly, then.

Neutrino signals from no-rotating model

SASIによる揺れがニュート リノ観測に現れる。 SASIの強さと見る方向によってはうまく見れない可能性も。

Efficient technique for extracting feature of the signal

周波数空間でみると特徴がはっきりわかる。 ⇒SASIの証拠 ⇒爆発メカニズムがかなり特定できる。

Story of my talk

- 1. Dynamics of Supernovae in 1D model
- 2. Information from ν light curve(DC component)
- 3. Dynamics of Supernovae in 3D model
- 4. Information from ν light curve(AC component)
- 5. If the star rotates rapidly, then.

3D model with rotation

Rotational Explosion

Strong expansion is found at equatorial plane

Eexp~5x10^50erg

(see also Nakamura+14 and Iwakami+14)/

Neutrino signals from rotating model

Takiwaki+ in prep

Period of spiral mode is extracted by ν -signal

Summary & Future prospect

超新星の爆発メカニズムを解明するためには以下の2つ が重要。

(1)爆発がルミノシティ—質量降着率の平面のどこにくるのか特定する。

(2)ルミノシティの時間変動を解析し、SASIの周波数(or 回転周波数)のところにピークがあるか調べる。

(1)の精度をよくするためには、電子タイプvシグナルの情 報やエネルギーの情報を使うと良い。v振動の効果も踏ま える。

(2)は今のところIce cubeが有利そうではあるが、他の検 出器も使うことで何か分からないか、検討をする。

Spiral Mode

Rotational energy(T)/gravitational energy(W) reach some criteria => Spiral mode arises In the rigid ball: 14% In SNe case: ~ 6% (Called low-T/W instability)

Energy Transport by spiral mode

Averaged shock radius and Exp. Energy

Quantitative estimation of convective effect

Hanke+2012

Convection reduces critical luminosity by 50%.

Toward making convincing model

Multi-D model is very delicate that depends on input physics and methods strongly!

Explode

3D

Range of error

1D

(method and input)

Not explode

2D models for multiple progenitors

- Bruenn+12: all explode
- Mueller+13: almost all explode
- Dolence+14:not explode ____
- Nakamura+14:all explode
- Suwa +14: half of them explode
- Hanke in prep: almost all explode
- 3D models for multiple progenitors
- Hanke in prep: not explode(3model)
- Takiwaki in prep: half of them explode (failed in heavier progenitor)

Rotation rate after the collapse

S27-R2.0 => 2000 rad/s@400ms after bounce

Initial period of pulsar~10ms => 100 rad/s Fastest pulsar ~ 16ms Club 19 ms

Ott+ 2006

Effect of Magnetic field

磁気回転不安定性で 対流安定な場所でも 乱流的になる。 それがニュートリノ光 度が上がったり、加熱

に効くかもしれない。

Masada+ 2014

高解像度計算が必要 すぐに完全な計算はできない 徐々に調べる

Angular momentum is transported

43

ルミノシティとエネルギー

Roughly consistent!

VE > M1 > IDSA

The exact flux factor is smaller than approximate flux facor?

Similar results is obtained by cancelation of positive and negative effect.

- +: NES is not included in IDSA
- -: Flux factor is larger for IDSA, heating rate is small.

Oscillation Method

Based on Dasgupta 2010

Features

- 1. Both collective and MSW effects for collective effect single angle approximation is used
- 2. Three flavor
- 3. Parameters are tuned to recent experiments

 $\begin{aligned} \sin^2 2\theta_{13} &= 0.84\\ \sin^2 2\theta_{12} &= 1.0\\ \sin^2 2\theta_{13} &= 0.29\\ \Delta m_{21}{}^2 &= 7.6d\text{-}05\\ |\Delta m_{31}{}^2| &= 2.5d\text{-}03 \end{aligned}$

Example of self-interaction

Inverted Hierarchy m_3 < m_1

Low energy anti-electron neutrino survives.

High energy anti-electron neutrino is completely swapped by anti-v_X.

Radius for the swap (r_s, r_e) is rather consistent with the previous work.

(r_s, r_e) are a little different for the progenitor. In multi-D model, we found explosion and oscillation should affect to the shock at later phase.

Prediction for the v observation in SK

Self: anti $\nu_e =>$ anti- ν_X MSW: anti- $\nu_X =>$ anti ν_e

Self+MSW = original anti- ν _e (actually 7:3 mixture)