超新星ニュートリノ加熱物質中の元素合成

和南城伸也(理研 iTHES) with H.-T. Janka (MPA), B. Müller (Monash Univ.)

新学術領域研究会 2015年5月15-17日,神戸大学

contents

- nucleosynthesis during the first 1 second; what do we see in the innermost SN ejecta? (Wanajo, Janka, Müller 2011, 2013, and in prep.)
- 2. nucleosynthesis during the next 10 seconds; do we see an r-process? (Wanajo 2013)
- 3. how close to successful supernova explosions? sensitivity to neutrino opacity (Melson+2015)

 nucleosynthesis during the first 1 second; what do we see in the innermost SN ejecta? (Wanajo, Janka, Müller 2011, 2013, in prep.)

current status of SN simulations

	explosion (~ 10 M_{\odot})	explosion (> 10 M_{\odot})
1D	yes	no
2D	yes	yes
3D	yes	no

pre-SN core density profiles

known problems in SN nucleosynthesis

what crucial for nucleosynthesis are...

important physical parameters
 entropy; S (∝ T³/ρ) controls n, p, α amounts
 expansion timescale; τ (*e*-folding time of T) controls n, p, α amounts
 electron fraction; Y_e (protons per nucleon) controls n/p ratios

innermost ejecta of SNe

- elements up to iron are formed in the outer layers
- (light) trans-iron elements likely to be formed in the innermost layers
- difficult to constrain Y_e
 from simulations because
 of its sensitivity to
 neutrino spectra

what determines Y_e?

• Y_e is determined by

 $v_e + n \rightarrow p + e^ \overline{v}_e + p \rightarrow n + e^+$

✤ equilibrium value is

$$Y_{\rm e} \sim \left[1 + \frac{L_{\overline{\nu}{\rm e}}}{L_{\nu \rm e}} \frac{\varepsilon_{\overline{\nu}{\rm e}} - 2\Delta}{\varepsilon_{\nu \rm e} + 2\Delta} \right]^{-1},$$
$$\Delta = M_{\rm n} - M_{\rm p} \approx 1.29 \text{ MeV}$$

tor $Y_{\rm e}$ < 0.5 (i.e., n-rich)

$$\varepsilon_{\overline{v}e} - \varepsilon_{ve} > 4\Delta \sim 5 \text{ MeV}$$

for $L_{\overline{v}e} \approx L_{ve}$

新学術領域研究会

neutrino spectra in the early times are crucial for nucleosynthesis !!!

和南城伸也

2D SN simulations with v-transport

- a number of selfconsistent SN models with neutrino transport
 - are now available

very first result of
 SN nucleosynthesis
 with such models

$8.8\,M_{\odot}\,\,{\rm self-consistently\,exploding}\\ {\rm ONeMg\,\,core\,\,supernova}$

simulation by Bernhard Müller

27 M_O self-consistently exploding Fe core

simulation by Bernhard Müller

neutron-richness in the ejecta

 $Y_{\rm e}$ distribution in the innermost ejecta (~ 0.01 M_{\odot})

light SNe have more n-rich ejecta (less neutrinoprocessed)

massive SNe have more p-rich ejecta (more neutrinoprocessed)

新学術領域研究会

elemental abundances for each SN

Wanajo+2015, in prep.

新学術領域研究会

和南城伸也

a little bit more of ECSNe: ⁴⁸Ca

48_{Ti} 42_{Ti} 43_{T1} 45_{Ti} 47_{Ti} 50_{Ti} 44Ti 46_{Ti} ⁴⁹Ti 73.72 199.00 ms 509.00 ms 8.25 7.44 5.41 5.18 59.99 a 3.08 h 42SC 43SC 44Sc 46SC 45Sc 47Sc 485c 41Sc 49Sc 596.00 ms 681.00 ms 83.79 d 1.82 d 3.89 h 3.97 h 100 3.35 d 57.20 m 40Ca ⁴⁵Ca 41Ca 46Ca 47Ca 42Ca ⁴³Ca ⁴⁴Ca 48Ca 96.94 102.01 ka 0.647 0.135 2.09 162.62 d 0.004 4.54 d 0.187 40_K 47K 42K 39K 41_K 43K 44K 45_K 46K 93.2581 1.25x10⁹ y 6.7302 12.32 h 1.75 m 22.30 h 22.13 m 17.30 m 17.50 s

www.kadonis.org

⁴⁸Ca

- ✤ doubly magic (Z = 20, N = 28) n-rich isotope
- * almost stable ($t_{1/2} = 1.9 \times 10^{19}$ yr by double β -decay)
- origin is unknown; only suggested are hypothetical SNe Ia

a little bit more of ECSNe: ⁶⁰Fe

56_{Ni} 57_{Ni} 59_{Ni} 61Ni 58_{Ni} 60_{Ni} 62_{Ni} 6.08 d 1.48 d 68.077 75.99 ka 26.223 3.634 1.14 B⁺ 38.7 mb 87 mb, β⁺ 30 mb 82 mb 22.3 mb B⁺ 55Co 58Co 60Co 56Co 57Co 59Co 61Co 77.23 d 271.76 d 70.86 d 5.27 a 1.65 h 17.53 h 100 B⁺ B⁺ B⁺ B⁺ 38 mb B⁻ β-⁵⁸Fe ⁶⁰Fe 59Fe 54Fe 55_{Fe} ⁵⁶Fe 57_{Fe} 5.845 2.74 a 2.119 0.282 44.50 d 91.754 1.50 Ma 27.6 mb 75 mb, 8⁺ 11.7 mb 40 mb 12.1 mb B⁻ B.

www.kadonis.org

⁶⁰Fe

- ✤ n-rich radionuclide with $t_{1/2} = 2.62 \times 10^6$ yr (Rugel+2009)
- Iive ⁶⁰Fe in the early solar system (e.g., Tachibana+2003)
- Iive ⁶⁰Fe in the Milky Way Galaxy (e.g., Harris+2005)
- CCSNe (n-capture in He, O/Ne layers) can be the sources?

ECSNe make both ⁴⁸Ca and ⁶⁰Fe !

Wanajo+2013

2. nucleosynthesis during the next 10 seconds;
is the answer blowing in the wind? (Wanajo 2013)

how to make the 3rd peak and beyond

physical condition for making $A \ge 200$ (Hoffman+1997)

- ★ high entropy scenario (S > 100 k_B nuc⁻¹) $f_{200} = (S / 230 k_B nuc^{-1})^3 / [(Y_e / 0.4)^3 (\tau / 20 ms)] \ge 1$
- ♦ low entropy scenario ($S < 100 k_{\rm B} \, \rm nuc^{-1}$)
 - $Y_{\rm e}$ < 0.2 with any S, au

high-entropy SN neutrino-driven wind

- Successful r-process in the neutrino-driven winds of S_{rad}~400 k_B/nuc (1D hydro, 20 M_☉ star; Meyer+1992; Woosley+1994)
- but such high entropy is unlikely

(< 200 k_B/nuc; Takahashi+1994; Qian+1996; Otsuki+2000) 新学術領域研究会 和南城伸也

neutrino-driven wind is "proton-rich" ?

Y_e > 0.5 in all recent neutrino-transport simulations because of similar neutrino energies and luminosities for all flavors (i.e., protons are favored due to the p-n-mass difference)

* no r-process is expected regardless of S or τ ??

新学術領域研究会

和南城伸也

no, PNS wind is "slightly" n-rich!?

- for $\rho > 10^{13}$ g cm⁻³, symmetry energy enhances $v_{\rm p}$ + n and suppress $\bar{v}_{\rm p}$ + p (Reddy+1998; Roberts +2012; M.-Pinedo+2012)
- proto-NS wind can be n-rich (down to $Y_{\rho} \sim 0.4$?) in the early phase, NOT in the late phase (Pauli-blocking for charged current reactions; Fischer +2012)

"history" of Y_e evolutions: who is right?

is the answer blowing in the wind?

semi-analytic full-GR wind model (Wanajo 2013)

is the answer blowing in the wind?

ad hoc Y_e evolution (to mimic Roberts+2012) \Rightarrow only very massive proto-NSs (> 2.2 M_{\odot}) satisfy $f_{200} \ge 1$

is the answer blowing in the wind?

Wanajo 2013

3. how close to successful supernova explosions? sensitivity to neutrino opacity (Melson+2015)

strange quarks help the explosion?

strange quarks help the explosion?

Iowest-order differential neutrino-nucleon scattering cross section

$$\frac{\mathrm{d}\sigma_0}{\mathrm{d}\Omega} = \frac{G_{\mathrm{F}}^2 \epsilon^2}{4\pi^2} \left[c_{\mathrm{v}}^2 (1 + \cos\theta) + c_{\mathrm{a}}^2 (3 - \cos\theta) \right]$$

- strange quark contribution $g_a^s (\leq 0)$
 - $c_{\rm a} = \frac{1}{2} (\pm g_{\rm a} g_{\rm a}^{\rm s})$ where the plus sign is for vp and the minus sign for vn
- ★ c_a² decreases in the (n-rich) neutrinospheric region
 → ~10% reduction of neutral-current opacity (g_a = 1.26, g_a^s = -0.2)
 → ~10% increase of neutrino luminosities and mean energies
 → more efficient neutrino heating in the gain region

only a 10% change of neutrino opacity can help the explosion !!!

strange quarks help the explosion?

MiniBooNE; Golan+2013

lattice QCD; Abdel-Rehim+2014

theory

small (negative) value with small errors: $g_a^{s} = -0.05$ to -0.02

summary

- core-collapse SNe can make light trans-iron elements (Zn to Zr) but r-process elements (see NS merger works; Wanajo+2014)
- nucleosynthesis in the innermost ejecta is higly sensitive to neutrino spectra; a few percent accuracy for Y_e is needed
- 10% change of neutrino opacity can help SN explosions

新学術領域研究会

和南城伸也