AMS-02による反陽子 宇宙線観測と暗黒物質

Kazunori Nakayama (University of Tokyo)

2015/5/16,神戸大学

Current situation

- Excess in Positron and Electron flux : PAMELA/AMS-02 and Fermi
- No excess in gamma-rays : Fermi, HESS, ...
- No excess in neutrinos : SK, IceCube
- Strong constraint from CMB and BBN
- Excess in Anti-Proton ? : AMS-02

Indirect detection of dark matter

 $DM + DM \rightarrow e^{\pm}, \gamma, \bar{p}, \nu, \dots$

 $e^{\pm}\bar{p}$

Positron/electron Excess

PAMELA

2010年2月25日木曜日

Positron by AMS-02

Anti-proton by AMS-02

Astrophysics ?

G.Giesen et al, 1504.04276

Dark Matter ! ?

 10^{4}

Jin, Wu, Zhou, 1504.04604

$$\frac{\partial}{\partial t}f_i(E,\vec{x}) = K(E)\nabla^2 f_i(E,\vec{x}) + \frac{\partial}{\partial E}[b(E)f_i(E,\vec{x})] + Q_i(E,\vec{x}) - \frac{\partial}{\partial z}[V_c(z)f_i(E,\vec{x})] - \frac{f_i(E,\vec{x})}{\tau_i} + \sum_{j>i}\frac{P_{ji}}{\tau_j}f_j(E,\vec{x}),$$

$f_i(E, \vec{x})$: Distribution function of species i

Diffusion Equation for Positron

Diffusion Equation for Anti-Proton

• DM source term

$$Q(T, \vec{r}) = q(\vec{r}) \frac{dN_{\bar{p}}(T)}{dT}$$

$$q(\vec{r}) = \frac{1}{2} \langle \sigma v \rangle \left(\frac{\rho_{\rm DM}(|\vec{r}|)}{m_{\rm DM}} \right)^2$$
$$q(\vec{r}) = \frac{1}{\tau_{\rm DM}} \left(\frac{\rho_{\rm DM}(|\vec{r}|)}{m_{\rm DM}} \right)$$

for annihilating DM,

for decaying DM.

: energy spectrum of anti-p from DM decay

 $\langle \sigma v \rangle$, $\tau_{\rm DM}$: DM annihilation cross section, lifetime

 $\rho_{\rm DM}(|\vec{r}|)$: DM density profile in the Galaxy

• Propagation of charged particle in tangled magnetic field

$$\lambda = \frac{K(E)}{c} \sim 10^{17} \text{cm} \left(\frac{E}{1 \text{GeV}}\right)^{\delta} \sim 0.1 \text{pc}$$

$$r \sim \sqrt{K(E)t} \sim 1 \text{kpc} \left(\frac{t}{10^8 \text{ yr}}\right)^{\frac{1}{2}} \left(\frac{E}{1 \text{GeV}}\right)^{\frac{5}{2}}$$

Charged particle escapes from diffusion zone after 10^7~10^8 yr.

 $\equiv t_{\rm esc}$

• Electron/positron loses energy before escape due to inverse Compton and synchrotron:

$$r_{\text{loss}} = \sqrt{\frac{EK(E)}{b(E)}} \sim 1.8 \text{ kpc} \left(\frac{1 \text{ GeV}}{E}\right)^{(\delta-1)/2}$$

• Primary/Secondary ratio

Primary: Produced at Source (Proton, Carbon, ...) Secondary: Produced by primary CR-intersteller medium interaction (Anti-proton, Boron, ...)

$$f_{\rm sec}$$

*J*prim

$$rac{f_{
m sec}}{f_{
m prim}} \sim rac{t_{
m int}}{t_{
m esc}}$$

Prim/Sec ratio determines escape time, but there is a degeneracy on K and L.

	<i>R</i> [kpc]	<i>L</i> [kpc]	δ	$K_0[\mathrm{kpc}^2/\mathrm{Myr}]$	$K_0[\mathrm{cm}^2/\mathrm{s}]$	$V_c[\rm km/s]$
MAX	20.0	15	0.46	0.0765	2.31×10^{28}	5
MED	20.0	4	0.70	0.0112	3.38×10^{27}	12
MIN	20.0	1	0.85	0.0016	4.83×10^{26}	13.5

Donato et al. (2004)

Anti-p of DM origin is Primary, not Secondary, hence anti-p flux of DM origin significantly depend on L.

Jin, Wu, Zhou, 1504.04604

Jin, Wu, Zhou, 1504.04604

• Anti-proton flux from DM : diffusion model dependence

Hamaguchi, Moroi, KN, 1504.05937

- Wino Dark Matter
 - Wino : Superpartner of W boson.
 - Lightest SUSY particle in anomaly-mediation or pure gravity mediation.
 - Most attractive DM candidate after discovery of I25GeV Higgs.
 - It can reproduce AMS-02 result with thermal relic DM scenario!!

Ibe,Matsumoto,Shirai,Yanagida, 1504.05554 Hamaguchi, Moroi, KN, 1504.05937

Wino Dark Matter

Ibe, Matsumoto, Shirai, Yanagida, 1504.05554

Direct detection of Wino Dark Matter

Billard, Figueroa-Faliciano, Strigari, 1307.5458

Positron and Anti-proton excess can be simultaneously explained by some DM model.

Chen, Chiang, Nomura, 1504.07848

Gamma-ray sky

Galactic Center:

Pros: Good statistics

Cons: confusion, diffuse BG

<u>Satellites:</u>

Pros: Low BG and good source id Cons: low statistics <u>MW halo:</u> Pros: very good statistics

Cons: diffuse BG

Baltz+08

Spectral lines: Pros: no astrophysical uncertainty (Smoking gun) Cons: low statistics

<u>Clusters:</u>

Pros: low BG and good source id Cons: low statistics, astrophysical uncertainties

Extragalactic: Pros: very good statistics Cons: diffuse BG, astrophysical uncertainties

6/17

T. Mizuno et al.

Slide from Talk by Tsunefumi Mizuno

TABLE I. Properties of Milky Way dSphs.

Gamma-rays from dwarf Spheroidals (dSph) $\phi_s(\Delta\Omega) = \frac{1}{4\pi} \frac{\langle \sigma v \rangle}{2m_{\rm DM}^2} \int_{E_{\rm min}}^{E_{\rm max}} \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}E_{\gamma}} \mathrm{d}E_{\gamma}$ particle physics $\times \int_{\Delta\Omega} \int_{\text{l.o.s.}} \rho_{\rm DM}^2(\boldsymbol{r}) dl d\Omega' .$ J-factor

Name	ℓ^{a}	b^{a}	Distance	$\log_{10}(J_{\rm obs})^{\rm b}$
	(deg)	(deg)	(kpc)	$(\log_{10}[{\rm GeV}^2{\rm cm}^{-5}])$
Bootes I	358.1	69.6	66	18.8 ± 0.22
Canes Venatici II	113.6	82.7	160	17.9 ± 0.25
Carina	260.1	-22.2	105	18.1 ± 0.23
Coma Berenices	241.9	83.6	44	19.0 ± 0.25
Draco	86.4	34.7	76	18.8 ± 0.16
Fornax	237.1	-65.7	147	18.2 ± 0.21
Hercules	28.7	36.9	132	18.1 ± 0.25
Leo II	220.2	67.2	233	17.6 ± 0.18
Leo IV	265.4	56.5	154	17.9 ± 0.28
Sculptor	287.5	-83.2	86	18.6 ± 0.18
Segue 1	220.5	50.4	23	19.5 ± 0.29
Sextans	243.5	42.3	86	18.4 ± 0.27
Ursa Major II	152.5	37.4	32	19.3 ± 0.28
Ursa Minor	105.0	44.8	76	18.8 ± 0.19
Willman 1	158.6	56.8	38	19.1 ± 0.31
Bootes II $^{\rm c}$	353.7	68.9	42	_
Bootes III	35.4	75.4	47	_
Canes Venatici I	74.3	79.8	218	17.7 ± 0.26
Canis Major	240.0	-8.0	7	_
Leo I	226.0	49.1	254	17.7 ± 0.18
Leo V	261.9	58.5	178	_
Pisces II	79.2	-47.1	182	_
Sagittarius	5.6	-14.2	26	_
Segue 2	149.4	-38.1	35	_
Ursa Major I	159.4	54.4	97	18.3 ± 0.24

M.Ackerman et al., 1503.02641

• Fermi constraint on DM ann. from dwarf spheroidal galaxies

dSph : DM dominated system, Small uncertainty from DM density profile

M.Ackerman et al., 1503.02641

For decaying DM, extragalactic gamma-rays gives severe constraint.

Ando, Ishiwata, 1502.02007

Constraint on Wino DM from HESS gamma-ray line search

Baumgart, Rothstein, Vaidya, 1412.8698

Summary

- AMS-02 reported excess of Anti-Proton flux
- It can be explained astrophysical sources
- It can also be explained Dark Matter annihilation/decay
- Wino Dark Matter is a good candidate

Constraint from Neutrino

Moline, Ibarra, Palomares-Ruiz, 1412.4308

