Neutrinoless Double-Beta Decay and Bolometric Search with CUORE

May 11, 2016 Tokyo, Japan

Yury Kolomensky UC Berkeley/LBNL

CUORE

Overview

- Neutrinoless Double Beta Decay
- CUORE: tonne-scale bolometric $0\nu\beta\beta$ experiment
 - CUORE-0 Results
 - CUORE status and outlook
- Future upgrade: CUPID

Year of Neutrinos

Yury Kolomensky: $0\nu\beta\beta$ & CUORE

Year of Neutrinos

Year of Neutrinos

3

Neutrino Physics Landscape

05/11/2016

Neutrino Physics Landscape

- Compelling evidence for
 - Neutrino flavor-changing oscillations
 - (therefore) finite neutrino masses
 - Mixing angles are well measured

Neutrino Physics Landscape

- Compelling evidence for
 - Neutrino flavor-changing oscillations
 - (therefore) finite neutrino masses
 - Mixing angles are well measured
- Open questions in ν Physics:
 - How many neutrinos?
 Sterile neutrinos ?
 - What is absolute scale of v mass ?
 - □ How are masses arranged ?
 - Are neutrinos responsible for matterantimatter asymmetry ?
 - Majorana or Dirac neutrinos ?
 - □ Is Lepton Number conserved ?

Dirac vs Majorana Neutrinos

- Understanding how neutrinos acquire mass is of fundamental importance
- Dirac
- Requires new fundamental global symmetry U(1)_{lepton number}
 - ⁽³⁾ New physics ?
 - Matter and antimatter are fundamentally different

- Majorana
- Cannot be explained by "standard" Higgs Yukawa coupling
 - The New physics ?
 - Potentially sensitive to very high mass scales
 - Can generate matter⇔antimatter transitions

Dirac vs Majorana Neutrinos

- Understanding how neutrinos acquire mass is of fundamental importance
- Dirac

- Requires new fundamental global symmetry U(1)_{lepton number}
 - Thew physics ?
 - Matter and antimatter are fundamentally different

- Majorana
- Cannot be explained by "standard" Higgs Yukawa coupling
 - The New physics ?
 - Potentially sensitive to very high mass scales
 - Can generate matter⇔antimatter transitions

Neutrinoless Double-Beta Decay

CUORE

Neutrinoless Double-Beta Decay

- Observation of $0\nu\beta\beta$ would mean
 - Lepton number violation
 - Neutrinos are Majorana particles
 - Rate measures (effective) electron neutrino mass

$$m_{\beta\beta} = |\sum_{i} m_{i} \cdot U_{ie}^{2}|$$

05/11/2016

 $|M_{nucl}|^2 |m_{\beta\beta}|^2$

Yury Kolomensky: $0\nu\beta\beta$ & CUORE

CUORE

Yury Kolomensky: $0\nu\beta\beta$ & CUORE

 m^2

Ονββ **Rate and Neutrino Mass**

 $\tau^{0\nu} \sim 10^{24} - 10^{26}$ years: large mass and extremely low backgrounds needed (underground labs, ultra purity materials, active rejection of backgrounds)

05/11/2016

CUORE

Experimental challenge:

✓ Increase *Mass* (200-1000 kg for current experiments): \$\$, R&D

✓ Increase *Isotopic Abundance*: \$\$

✓ Decrease *Bkg* (ultimately to $2\nu\beta\beta$ limit): radiopurity, active rejection

✓ Decrease ΔE : technology choice

CUORE

$O_V \beta \beta$ Isotopes: Figure of Merit

 $F = G_F^2 \Phi(Q,Z) |M_{0v}|^2 m_e^2 [y^{-1}] \qquad (Want as high as possible)$

05/11/2016

11

Yury Kolomensky: $0\nu\beta\beta$ & CUORE

CUORE

$O_{\nu\beta\beta}$ Isotopes: Figure of Merit

 $F = G_F^2 \Phi(Q,Z) |M_{0_V}|^2 m_e^2 [y^{-1}] \qquad (Want as high as possible)$

05/11/2016

11

Yury Kolomensky: $0\nu\beta\beta$ & CUORE

Diverse, Vibrant Program

J.F. Wilkerson

05/11/2016

Yury Kolomensky: $0\nu\beta\beta$ & CUORE

CUORE

Diverse, Vibrant Program

J.F. Wilkerson

05/11/2016

Yury Kolomensky: $0\nu\beta\beta$ & CUORE

Detection Techniques

Yury Kolomensky: $0\nu\beta\beta$ & CUORE

Cryogenic Underground Observatory for Rare CUORE **Events DEGLI STUDI** CAL POLY Lawrence Livermore National Laboratory UNIVERSIT אזר ותמ ים ום ΙΝΓΝ Istituto Nazionale SINAP di Fisica Nucleare BICOCCĂ LUX ET VERITA Massachusetts CSNSM Institute of Technology SAPIENZA UNIVERSITÀ DI ROMA CUORE **rrrrr** UNIVERSITY OF SOUTH CAROLINA BERKELEY LAB

Yury Kolomensky: $0\nu\beta\beta$ & CUORE

Ultra-cold TeO₂ crystals function as very sensitive calorimeters

15

Yury Kolomensky: $0\nu\beta\beta$ & CUORE

Cryogenic Bolometer Array

Yury Kolomensky: $0\nu\beta\beta$ & CUORE

Array of 988 TeO₂ crystals

• 19 towers suspended in a cylindrical structure

CUORE

- 13 levels, 4 crystals each
- 5x5x5 cm³ (750g each)

05/11/2016

• ¹³⁰Te: 34.2% natural isotope abundance

750 kg TeO₂ => 206 kg ¹³⁰Te

- New pulse tube refrigerator and cryostat
- Radio-purity techniques and high resolution achieve low backgrounds
- Joint venture between Italy (INFN) and US (DOE, NSF)
- Under construction (expected start of operations in rly 2016)

cpect energy resolution of 5 eV FWHM and ckground of ~0.01 punts/(2g*1 V*year) in ROI

Yury Kolomensky: $0\nu\beta\beta$ & CUORE

Going underground LNGS

Yury Kolomensky: $0\nu\beta\beta$ & CUORE

05/11/2016

Going underground: LNGS

Shielding: ~ 3650 m.w.e. Muons: $\sim 2 \ge 10^{-8}$ /cm²-s Thermal neutrons: $\sim 1 \ge 10^{-6}$ /cm²-s Epithermal neutrons: $\sim 2 \ge 10^{-6}$ /cm²-s > 2.5 MeV Neutrons: $2 \ge 10^{-7}$ /cm²-s

The CUORE Program

Yury Kolomensky: $0\nu\beta\beta$ & CUORE

Yury Kolomensky: $0\nu\beta\beta$ & CUORE

^{05/11/2016}

Yury Kolomensky: $0\nu\beta\beta$ & CUORE

Yury Kolomensky: $0\nu\beta\beta$ & CUORE

From Cuoricino to CUORE

- Larger
- Cleaner crystals
- Cleaner copper, and less of it per kgTeO₂
- Cleaner assembly environment
- More robust assembly methods, better wiring
- Better self-shielding & anticoincidence coverage
- Better fit tolerances, hence less vibration

	Cuoricino	CUORE-0	CUORE
¹³⁰ Te mass (kg)			206
Background (c/keV/kg/y) @ 2528 keV	0.17	0.06	0.01
E resolution (keV) FWHM @ 2615 keV	5.8	4.9	5
T _{1/2} sensitivity (10 ²⁴ yr) @ 90% C.L.	2.6	2.9	95

22

CUORE Assembly Line

Sensor Gluing

Semi-automated, glovebox-enclosed system used to glue sensors to crystals in consistent, reproducible fashion

CUORE-0 Tower Assembly

Physical assembly

CUORE-0 assembly:

- ♦ 51/52 thermistors connected
- ♦ 50/52 heaters connectedCUORE assembly:
- ♦ 988/988 thermistors connected
- ♦ 988/988 heaters connected

Wire bonding

Complete

05/11/2016

Complete Tower

Tower Storage and Transfer

- First tower from the CUORE detector assembly line
- \blacktriangleright 52 TeO₂ crystals, total mass = 39 kg TeO₂ = 10.9 kg ¹³⁰Te

► Purpose:

- Commission assembly line Ι.
- Run as standalone experiment while CUORE is being 2. constructed, with aim of surpassing Cuoricino
- 3. Validate CUORE detector design
- Provide test bed for developing DAQ & analysis 4. framework for CUORE
- Operating in former Cuoricino cryostat since March 2013

27

Energy Resolution

- We evaluate the energy resolution for each bolometer and dataset by fitting the ²⁰⁸TI photopeak in the calibration data
- We achieved the 5 keV resolution goal of CUORE!

Backgrounds

Experiment	Background rate (counts/keV/kg/y)	
	$0\nu\beta\beta$ decay region	Alpha region (excl. peak)
Cuoricino	0.169 ± 0.006	0.110 ± 0.001
CUORE-0	0.058 ± 0.004	0.016 ± 0.001

05/11/2016

CUORE-0 Reach

Yury Kolomensky: $0\nu\beta\beta$ & CUORE

From CUORE-0 to CUORE

CUORE-0

From CUORE-0 to CUORE

CUORE-0

05/11/2016

From CUORE-0 to CUORE

CUORE-0

05/11/2016

From CUORE-0 to CUORE

CUORE-0

CUORE

CUORE Background Model

CUORE Background Model

R. Artusa et al., "Projected background budget of the CUORE experiment", in preparation CUORE background goals now demonstrated

33

³⁴ CUORE cryostat CUORE Cryostat

- 10 mK baseline temperature
 - 750 kg of crystals
 - Copper supporting structure
- ~20 tons at various low temperature
- Low background
 - Built with radio-pure materials
 - Roman lead shield from ancient shipwreck, <4mBq/kg ²¹⁰Pb
- Low vibrations
 - Separated suspension for the crystal tower and DR
- Minimal maintenance and dead time
 - Cryogen free DR

³⁴ CUORE cryostat CUORE Cryostat

- 10 mK baseline temperature
 - 750 kg of crystals
 - Copper supporting structure
- ~20 tons at various low temperature
- Low background
 - Built with radio-pure materials
 - Roman lead shield from ancient shipwreck, <4mBq/kg ²¹⁰Pb
- Low vibrations
 - Separated suspension for the crystal tower and DR
- Minimal maintenance and dead time
 - Cryogen free DR

Coldest m³ in known Universe !

Cryogenic Commissioning

- Cryogenic commissioning complete
- Demonstrated stable base temperature ~6.3 mK, design cooling power $(3\mu W @ 10 mK)$
 - □ Fully loaded cryostat (>10 t of lead and copper)
 - 70 days of cryogenic operations
 - Operated 8-detector "mini-tower", commissioned temperature stabilization system, electronics, DAQ, Detector Calibration System
 - Good news for detector resolution and backgrounds

Yury Kc

35

CUORE Status and Sensitivity

- Detector: all towers assembled, in underground storage
- Cryostat and dilution unit: commissioning complete
- Will install detectors and start operations by Fall 2016
- 5-year sensitivity: T_{1/2}(¹³⁰Te)>9.5×10²⁵ years, m_{ββ}<52-120 meV (@ 90% C.L.)

¹³⁰Te 90% exclusion

CUORE0+Cuoricino

Beyond CUORE: CUPID

05/11/2016

37

International $0\nu\beta\beta$ Program

1980 - 2007

J.F. Wilkerson

05/11/2016

05/11/2016

J.F. Wilkerson

International $0\nu\beta\beta$ Program

1980 - 2007

2007 - 2017

2015 - 2025

J.F. Wilkerson

38

05/11/2016

International $0\nu\beta\beta$ Program

05/11/2016

38

Required Sensitivity

¹³⁰Te (nat.)

 $(3\sigma \text{ discovery level for } 50\% \text{ of toy experiments})$

05/11/2016

39

CUORE Background Model

CUORE Background Model

CUORE Background Model

CUORE Background Model

Yury Kolomensky: 0vββ & CUORE

CUPID Interest Group

High Energy Physics Division, Argonne National Laboratory, Argonne, IL, USA Materials Science Division, Argonne National Laboratory, Argonne, IL, USA INFN - Laboratori Nazionali del Gran Sasso, Assergi (AQ), Italy Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA Department of Nuclear Engineering, University of California, Berkeley, CA, USA Department of Physics, University of California, Berkeley, USA Università di Bologna and INFN Bologna, Bologna, Italy Massachusetts Institute of Technology, Cambridge, MA, USA Department of Physics and Astronomy, University of South Carolina, Columbia, SC, USA Technische Universität München, Physik-Department E15, Garching, Germany Dipartimento di Fisica, Università di Genova and INFN - Sezione di Genova, Genova, Italy Institute for Nuclear Research, Kyiv, Ukraine INFN - Laboratori Nazionali di Legnaro, Legnaro, Italy Lawrence Livermore National Laboratory, Livermore, CA, USA Department of Physics and Astronomy, University of California, Los Angeles, CA, USA INFN sez. di Milano Bicocca and Dipartimento di Fisica, Università di Milano Bicocca, Italy State Scientific Center of the Russian Federation - Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia Max-Planck-Institut für Physik, D-80805 München, Germany Nikolaev Institute of Inorganic Chemistry, SB RAS, Novosibirsk, Russia Sobolev Institute of Geology and Mineralogy, SB RAS, Novosibirsk, Russia Centre de Sciences Nuclèaires et de Sciences de la Matière (CSNSM), CNRS/IN2P3, Orsay, France INFN - Sezione di Padova, Padova, Italy Institut de Chimie de la Matière Condensè de Bordeaux (ICMCB), CNRS, 87, Pessac, France Dipartimento di Fisica, Università di Roma "La Sapienza" and INFN - Sezione di Roma, Roma, Italy IFN-CNR, Via Cineto Romano, I-00156 Roma, Italy Service de Physique des Particules, DSM/IRFU, CEA-Saclay, France Physics Department, California Polytechnic State University, San Luis Obispo, CA, USA Shanghai Institute of Applied Physics (SINAP), China Institut de Physique Nuclèaire de Lyon, Universitè Claude Bernard, Lyon 1, Villeurbanne, France Wright Laboratory, Department of Physics, Yale University, New Haven, CT, USA Laboratorio de Fisica Nuclear y Astropartculas, Universidad de Zaragoza, Zaragoza, Spain

 $(Q_{2})^{-1} = G(Q,Z)|M_{nucl}|^{2}|m_{\beta\beta}|^{2}$ $m_{\beta\beta} = |\sum_{i} m_{i} \cdot U_{ie}^{2}|$

Yury Kolomensky: $0\nu\beta\beta$ & CUORE

Many Thanks

S. Elliot, B.K. Fujikawa, J.J. Gomez-Cadenas,
G. Gratta, X. Ji, J. Klein, G.D. Orebi Gann,
B. Schwingenheuer, J.F. Wilkerson, L. Yang,
and members of the CUORE Collaboration