New" result of Kamband-Zen

Kunio Inoue for the KamLAND-Zen collaboration

Revealing the history of the universe with underground particle and nuclear research 2016, Koshiba Hall, 11 May 2016

"New"

Search for Majorana Neutrinos near the Inverted Mass Hierarchy region with KamLAND-Zen

A. Gando,¹ Y. Gando,¹ T. Hachiya,¹ A. Hayashi,¹ S. Hayashida,¹ H. Ikeda,¹ K. Inoue,^{1,2} K. Ishidoshiro,¹ Y. Karino,¹ M. Koga,^{1,2} S. Matsuda,¹ T. Mitsui,¹ K. Nakamura,^{1,2} S. Obara,¹ T. Oura,¹ H. Ozaki,¹ I. Shimizu,¹ Y. Shirahata,¹ J. Shirai,¹ A. Suzuki,¹ T. Takai,¹ K. Tamae,¹ Y. Teraoka,¹ K. Ueshima,¹ H. Watanabe,¹ A. Kozlov,² Y. Takemoto,² S. Yoshida,³ K. Fushimi,⁴ T.I. Banks,⁵ B.E. Berger,^{2,5} B.K. Fujikawa,^{2,5} T. O'Donnell,⁵ L.A. Winslow,⁶ Y. Efremenko,^{2,7} H.J. Karwowski,⁸ D.M. Markoff,⁸ W. Tornow,^{2,8} J.A. Detwiler,^{2,9} S. Enomoto,^{2,9} and M.P. Decowski^{2,10} (KamLAND-Zen Collaboration)

¹Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan ²Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan ³Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan ⁴Faculty of Integrated Arts and Science, University of Tokushima, Tokushima, 770-8502, Japan ⁵Physics Department, University of California, Berkeley, and Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA ⁶Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA ⁷Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA ⁸Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA and Physics Departments at Duke University, North Carolina Central University, and the University of North Carolina at Chapel Hill ⁹Center for Experimental Nuclear Physics and Astrophysics, University of Washington, Seattle, Washington 98195, USA ¹⁰Nikhef and the University of Amsterdam, Science Park, Amsterdam, the Netherlands

(Dated: May 11, 2016)

The latest paper has been submitted to PRL and posted on arXiv, yesterday.

Milestone

full coverage of Quasi Degenerate full coverage of Inverted Hierarchy full coverage of mlightest~0

 \rightarrow next milestone \rightarrow next gen. exp. \rightarrow very difficult

Ultra-low BG underground (& huge) experiment is necessary

It is KamLAND !!

Visible Energy (MeV)

Radiogenic heat measured, Model discrimination started

Ο

KamLAND-Zen

Zero Neutrino double beta decay search

Advantages of using KamLAND

- running detector
 - \rightarrow relatively low cost and quick start
- huge and clean (1200m³, U: 3.5x10⁻¹⁸g/g, Th: 5.2x10⁻¹⁷)
 → negligible external gamma

(Xe and mini-balloon need to be clean)

- Xe-LS can be purified, mini-balloon replaceable if necessary, with relatively low cost
 - \rightarrow highly scalable (up to several tons of Xe)
- No escape or invisible energy from β , γ \rightarrow BG identification relatively easy
- anti-neutrino observation continues
 - → geo-neutrino w/o Japanese reactors

320kg 90% enriched ¹³⁶Xe installed for phase-I and 380kg for phase-2

KamLAND-Zen started in 2011 only 2 years from initial funding

Unexpected BG has found

published result w/ high silver rate (phase-1)

What can we do?

purification !!

fine binning of volume

triple fold coincidence

future task

dead time

free

electronics

MoGURA

tripe fold coincidence

@Neutrino 2014

Now, the mini-balloon is extracted. (Dec. 2015)

teflation

for tank investigation required by law

Xenon has been recovered during recirculation and deflation of the mini-balloon.

We have acquired phase-2 data (after purification) from December 11 2013 to October 27, 2015; total livetime of 534.5 days (cf. T1/2(110mAg)=250 days) and exposure of 504 kg-yr.

In order to improve the sensitivity, we have performed all volume and time-binned analysis.

Source calibration

(Oct. 2015)

Energy resolution in phase-2: $\sim 7.3\%/\sqrt{E}$

×10³

1.17

4.947 MeV

5

visible energy [MeV]

R < 1.2 m

6 7 8 visible energy [MeV]

1.5

4

40 equal-volume bins

Energy and radial distributions are well-reproduced by known BGs. 14

Event summary 2.3 < E < 2.7 MeV, R < 1 m

	Period-1		Period-2		
	(270.7 days)		(263.8 days)		
Observed events	22		11		
Background	Estimated	Best-fit	Estimated	Best-fit	
136 Xe $2 uetaeta$	-	5.48	-	5.29	
Residual radioactivity in Xe-LS					
²¹⁴ Bi (²³⁸ U series)	0.23 ± 0.04	0.25	0.028 ± 0.005	5 0.03	
208 Tl (232 Th series)	-	0.001	-	0.001	
$^{110m}\mathrm{Ag}$	-	8.0	-	0.002	
External (Radioactivity in IB)					
²¹⁴ Bi (²³⁸ U series)	-	2.55	-	2.45	
208 Tl (232 Th series)	-	0.02	-	0.03	
$^{110m}\mathrm{Ag}$	-	0.002	-	0.001	
Spallation products					
¹⁰ C	2.7 ± 0.7	3.2	2.6 ± 0.7	2.7	
⁶ He	0.07 ± 0.18	0.08	0.07 ± 0.18	0.08	
12 B	0.15 ± 0.04	0.16	0.14 ± 0.04	0.15	
¹³⁷ Xe	0.9 ± 0.5	1.1	0.9 ± 0.5	0.8	

Results on $0\nu 2\beta$

livetime	period-1 270.7 day	period-2 s 263.8 days		
¹³⁶ Xe 0 ν 2 β decay rate	< 5.6 /kton/c	day < 3.2 /kton/day		
combined < 2.4 /kton/day (90%C.L.)				
¹³⁶ Xe 0 half-li	ν2β fe > 9.6>	×10 ²⁵ yr (90%C.L.)		
sensiti	vity > 4.9>	×10 ²⁵ yr (11% probability)		

Phase-1 & 2 combined limit

Big leap toward IH !!

Our challenge continues!

- We have purchased 800 kg of enriched xenon in total.
- We have fabricated a larger mini-balloon with better measures against dusts.
- We will resume the search with 750 kg of xenon in this fall. To be called as "KamLAND-Zen 800".
- (Expected sensitivity is below 50 meV hoping to cover Yanagida's prediction.)

Mini-balloon fabrication

cleaning, cleaning and cleaning as usual

Example of improvements before after

Well done!

Leak check and repair in high humidity will start soon.

target sensitivity 8 meV

R&D for KamLAND2-Zen and future

\bigcirc winston cone

⊖ HQE-PMT

Summary

- New results from Phase-2 (534.5 days, 380 kg) presented
 ^{110m}Ag has been successfully reduced.
 improved analysis: 40 equal bins for volume, 2 time bins
- Phase-1 & 2 combined result for $0\nu 2\beta$ of ¹³⁶Xe

$$T_{1/2}^{0\nu} > 1.1 \times 10^{26} \,\mathrm{yr}$$

 $\langle m_{\beta\beta} \rangle < (60 - 161) \,\mathrm{meV}$

KamLAND-Zen 800 planned to start in this fall.

750kg of enriched xenon will be installed.

Target sensitivity is below 50 meV.

• R&D for KamLAND2-Zen is going well. Target sensitivity is below 20 meV.

Thank you!