CANDLES Project for the study of neutrino-less double beta decay of ⁴⁸Ca

Sei Yoshida Department of Physics, Osaka Univ.

Revealing the history of the universe with underground particle and nuclear research

the University of Tokyo

May 11th, 2016

However,

Revealing the history of the universe with underground particle and nuclear research natural abundance (%) 11

CANDLES Project

The Project to search for Ovßß decay of ⁴⁸Ca,

CANDLES III Detector

Main detector CaF₂ scintillators (305kg)

Liquid scintillator acrylic tank (2.1 m³)

PMTs 13 inch (side) ; x 48 20 inch (top & bottom) ; x 14 Light pipe Photoelectron yield x ~1.75

Reventing to

• CaF₂ Module

- CaF₂(Pure); 96 Crystal → <u>305 kg</u>
- WLS Phase ; 280 nm → 420 nm
 - Thickness ; 5 mm
 - Composition ; Mineral Oil+bis-MSB (0.1 g/L)

• Liquid Scintillator (LS) 4π Active shield

- 1.37 m ϕ x 1.4 m height
- <u>Volume ; 2.1 m³ (1.65 ton)</u>
- Composition
 - Solvent ; Mineral Oil(80%)+PC(20%)
 - Solutes (WLS's) ; PPO (1.0g/L) + bis-MSB (0.1g/L)

• Acrylic Tank

• Container for LS

Water Buffer

- Pure Water → Passive Shield
 - (Pre,Final-filter, Chacoal-filter, UV-lamp, Ion-Exchanger)
- Distance PMT LS ; 50 cm

• PMTs + Light pipe

- 13 inch (Side) ; x 48
- 20 inch (Top and Bottom) ; x 14

Reflector Film : reflectivity ~93% @ 420nm 2016/5/11

Pulse Shape Discrimination

Scintillator ID (CaF₂ and LS signals)

 4π Active shield

Revealing the history of the universe with underground particle and nuclear research

Event Reconstruction

- 16 x 6 layers = 96 crystals
- <u>Calibration Crystal</u> (C11); Top layer

Contaminated Crystal (U, Th amounts ~ x 1000) to investigate detector performance.

100

Crystal ID :

Light pipe

(Side)

PMT

1,2,3,4

PMT

Revealing the history of the universe with underground particle and nuclear researed and a solution 20110952001300 400 500

Background Candidates

- 2νββ decay event (unavoidable background)
 - ◆ → Improve E-resolution
- <u>Natural radioactivities in CaF₂ crystal</u>

<u>**B-a Sequential Pulse</u>**</u>

Reduction by pulse shape analysis

208 TI Decay

Reduction by tagging the preceding alpha decay

Background Rejection (1)

- Sequential Event Rejection
 - We can identify the sequential events using pulse shape.
 - Rejection efficiency > 95% (currently)

Background Rejection (2) ²¹²Bi 1⁻ • Pile-up event & ²⁰⁸Tl Rejection Q_b:2.25 MeV 60.6 min 64% 36% Particle identification between a/y rays ²¹²Po Q_a:6.21MeV rejection of β-a pile-up events • identification of prompt ²¹²Bi event Qa:8.95 MeV 5+ 208**T** 3.05 min a sequential decay Q_p: 5.00MeV τ of CaF₂ signal : 0.9 μsec 97 % rejection efficiency at 2.6MeV (γ ray:3%) ²⁰⁸TI B-decay 208Ph → 97% (β+α) at 4.27MeV Shape Indicator 0.03 0. Shape Indicato ²¹⁴Po(2.6MeV) ²¹⁴Po(a-ray 0.03 $CaF_2 \gamma$ +small LS signal 0.02 0.01 ref: Shape Indicator a-ray events -0.01 (PRC67(2003) 014310) (2.6Me) y-ray events

 γ -ray

1500.2000 2500 3000 3500 4000 4508 & S ie universe with unde Eyergy (Lepon Signa) and

-0.02

Revealing the history of th

Energy Spectrum

Measurement : Physics run in CANDLES-III (2014)

- Current detector sensitivity (8 weeks) : 0.8×10²²year
- We will install shield system for γ-rays(neutron origin) and continue the measurement.
 - ➔ Detector sensitivity:0.5eV

Background @ High energy region

- Neutron source run (²⁵²Cf)
 - I hour of source run = 1 year of physics run
 - Energy spectrum obtained is well reproduced by MC of neutron capture γ -ray.
- (n,γ) BG in Övββ window is evaluated from MC spectrum.
 - Rock/SUS = 3.6 \pm 0.7 in $Q_{\beta\beta}\pm 1\sigma$
 - (n,y) BG: 3.4 \pm 0.4(stat.) evt/26crystals/60days (Run data, 3 \pm 1 evt)
 - Currently, most serious background component in CANDLES

2016/5/11

Shield for neutron induced y-rays

- Toward "Background Free Measurement"
 - We designed the shield by MC simulation, and had finished the construction.

Pb bricks

- 7 ~ 12cm in thickness
- Reduce (n,γ) BG from rock.
- Pb(n,γ) event rate is an order of magnitude smaller than that of stainless steel tank.
- γ-ray from rock decrease by factor of 1/180

Boron sheet

- B_4C loaded silicone rubber sheet: ~ 5 mm in thickness
- Reduce thermal neutron to avoid (n,γ) reaction in water tank.
- N-capture events decrease by factor of 1/40
- Number of BG after shield installation estimated by MC

Rock: 0.34±0.14 event/year Tank: 0.4±0.2 event/year

$T_{1/2} > 10^{23}$ year is expected with one year data !

Revealing the history of the universe with underground particle and nuclear research

CANDLES shield system

• Construction was finished till February 2016

Revealing the history of the universe with underground particle and nuclear research

etector Improvement Cooling system

- Installation of the Cooling system
 - CaF₂ light output depends on its temperature.

 - CaF₂ light output depends on its temperature.
 Gain ~ +2% / °C (down to -20 °C)
 To increase the light yield, the experimental room is to cooled down to 2 °C (~ 4 °C at detector center)
 To stabilize the temperatureat the detector center
 - within 0.1 °C (0.2% of gain).
 - \rightarrow Check gain stability using ²⁰⁸Tl y-ray peak

Detector Improvement Cancellation Coil

- Installation Magnetic cancellation coil
 - We are using large diameter PMTs (13 and 20 inch's). It is well-known to deteriorate the performance.
 - Winded coil surrounding the water tank ~1.5A current to cancel geomagnetic field.
 - Better p.e. collection efficiency of PMT dynode.

Detector Improvement

Light yield has been increased by the detector upgrades

Obtained from ⁸⁸Y source calibration

<u>Average on 96 CaF₂ crystals</u>		
	Relative light yield	Resolution (σ) at 1.8MeV
Before	1	4.8%
Coil ON	1.23	4.2%
Cooling	1.58	3.6%

• Cooling system works for stable temperature control.

 Gain increase and energy scale stability is also checked using 2.6MeV γ-ray peak of ²⁰⁸Tl.

Revealing the history of the universe with underground particle and nuclear research

Energy calibration (n,y) reaction

- New tool development for energy calibration near Q-value.
 - ²⁸Si(n,γ) reaction emits 3.5 MeV and 5.0 MeV γ-rays.
 - Si loaded polyethylene bricks are made and ²⁵²Cf neutron source is placed at the center of the bricks.
 7.6MeV
 9MeV

R&D for Future

Development in Future

Sensitivity of CANDLES

- Exploring Inverted hierarchy \rightarrow Normal hierarchy region
 - Required two improvements
 - Realizing highly enriched ⁴⁸CaF, and ton-scale detector. <u>The enrichment technique is</u> <u>beeing developed, and is established for the small amount of Calcium. The technique is</u> <u>promising, we are on the stage of stable driving.</u>
 - Much better energy resolution (to avoid $2v\beta\beta$ background events)
- Impossible to further improve the energy resolution of CaF₂ scintillator
 Development of ⁴⁸CaXX bolometer

Background Candidates in Bolometer

²¹²Bi

64°

60.6 min

36%

Qa:6.21MeV

²⁰⁸Pb

5+ 208**T**

3.05 min

Q₀: 5.00MeV

²⁰⁸TI B-decav

Q_b :2.25 MeV

²¹²Po

-a seguential decay

τ of CaF₂ signal : 0.9 μsec

Q_:8.95 MeV

- Tail of 2vββ spectrum
 - Improving energy resolution ; scintillator → Bolometer
- ⁴⁸CaXX internal radioactivities
 - Th-chain(β -a sequential decays) \rightarrow Bolometer
 - Th-chain(²⁰⁸Tl)
 - \rightarrow Segmentation, Multi-crystal
 - Environmental neutrons
 - Improving resolution + Multi-crystal

Scintillating Bolometer

- The technique (scintillating bolometer) was already established,
 - CRESST-II (CaWO₄), Lucifer, AMoRE
 - CaF₂(Eu) scintillating bolometer was also demonstrated by Milano group. Ref; NIMA386 (1997) 453, small size (~ 0.3 g) of CaF₂(Eu)

- Simultaneous measurement both heat and scintillation enables to identify the particle types (a/β particle ID)
- It is possible to reject alpha decay events of ²³⁸U
 - Q-value; 4.27MeV = Q-value of ⁴⁸Ca Ονββ

```
→ Chance to achieve "BG free measurement"
```

Current status of Development

- Dilution refrigerator
 - We will use the dilution refrigerator which was developed for the dark matter search by LiF by the Univ. of Tokyo group, and was customized to low BG measurement.
 - Preparing the operation.

Under leak hunting in the ³He-⁴He circulation line.

- Target
 - 2cm cube of CaF_2 crystal (25 g) in the initial stage.
 - Temperature rise at Q-value is 1.43×10^{-1} K at 10 mK.
 - Neutron Transmutation Doped Germanium(NTD-Ge) thermistors ← borrowed from the Univ. of Tokyo.

Schedule

Schedule (Challenging)

<u>2017</u>

- Jun. Achieve low temperature (~few K)
- Jul. Achieve ultra low temperature (~10 mK)
- Sep. Detect the heat signal
- Dec. Add a light detector to bolometer and achieve the simultaneous detection of heat and light signals

<u>2018</u>

Mar. Increasing crystal's size and number

Enrichment of ⁴⁸Ca : MCCCE

- Electrophoresis
 - Migration speed is different between ⁴⁰Ca/⁴⁸Ca → Isotope separation
 - Capillary Electrophoresis Small diameter → High power density $\underline{43Ca/48Ca(MCCCE)}$ • Small amount , Good separation in short time R(MCCCE) =43Ca/48Ca(natural • Counter Current Electrophoresis (CCE) 3.5 • Large diameter \rightarrow Low power density 3 Large amount, Low separation in long time 2.5 2 R(MCC 1.5 In order to overcome, 0.5 → Multi-channel CCE 0 Principle was demonstrated, 160 170 140 150 180 190 V (Applied voltage) currently stable driving and toward large amount 0.75 0.95 0.85 Migration speed (mm/sec) Enrichment (43/40): 3.08 → (48/40): ~ 6

R&D ; Enrichment of ⁴⁸Ca

- CANDLES is the project to search for Ovßß decay of ⁴⁸Ca.
- Measurement of Ονββ decay of ⁴⁸Ca has a great chance to achieve "Background Free Measurement", the key characteristic to perform sensitive Ονββ search.
- CANDLES-III detector is currently operated in the underground lab. at Kamioka mine.
 - The basic performance is now under investigation, especially about background profile, and its rejection capability.
 - We are continuously upgrading the detector to achieve the BG free condition.
- ⁴⁸Ca has a large potential sensitivity when we established the enrichment technique of ⁴⁸Ca (not mentioned in datail).
- For further improvement of the sensitivity, we are starting to develop the scintillating bolometer of CaF₂. This R&D will be a key technique to explore the normal hierarchy region.

CANDLES Collaboration

• Department of Physics, Osaka University

T. Kishimoto, S. Yoshida, H. Kakubata, Wang Wei, V. T. T. Trang, C. Wei Min, T. Maeda, T. Ohata, K. Tetsuno, T. Uehara, X. Lee, B.T. Khai, M. Shokati, T. Batpurev, K. Akutagawa, S. Katagiri, N. Yotsunaga, K. Kanagawa, M. Tsuzuki

- Research Center for Nuclear Physics, Osaka University
 M. Nomachi, S. Ajimura, S. Umehara, T. Iida, Y. Takemoto, K. Matsuoka, Y. Takihira
- Guraduate School of Engineering, University of Fukui
 Y. Tamagawa, I. Ogawa, K. Nakajima, S. Noshiro, A. Masuda, K. Morishita, M. Washino, F. Doukaku, T. Hiyama, K. Teranishi, N. Takahashi
- Faculty of Integrated Arts and Science, University of Tokushima K. Fushimi, K. Mori
- Osaka Sangyo University
 R. Hazama, N. Nakatani
- **Saga University** H. Ohsimi

Candle

