AXEL

high pressure xenon gas TPC for neutrinoless double beta decay search

> Kiseki Nakamura | Kyoto Univ. For the AXEL group

- 1. AXEL project
- 2. Fundamental studies
- 3. Prototype detector
- 4. Future prospect
- 5. Summary

- 1. AXEL project
- 2. Fundamental studies
- 3. Prototype detector
- 4. Future prospect
- 5. Summary

AXEL experiment

- <u>High pressure xenon gas TPC for $0\nu\beta\beta$ search</u>
 - High energy resolution : 0.5% (FWHM) @2.5MeV
 - gaseous xenon + electroluminescence
 - Large mass
 - BG discrimination
- : **1ton** (ϕ 3×2.5m, 10atm)
- : pixel readout (15mm pitch)

E

- Similar idea as NEXT experiment
- We introduce a new idea for signal readout (ELCC)

PM

EL readout idea: ELCC Electro Luminescence Collection Cell

• ELCC

- in the cell hole, electrons are collected and accelerated, then electroluminescence photons are generated
- photons are detected by MPPC(SiPM) in each cell
- Merit of ELCC
 - uniform response in wide area
 - rigid structure (--> large size)
 - anode electrode
 - PTFE insulator w/ holes(\u00f64mm)
 - mesh electrode
 - MPPC photon detector array

What we want to observe

- $0\nu\beta\beta$ signal
 - energy: integrated FADC
 - track: waveforms (pixel readout TPC)

10atm Xe100% 15mm pitch 1μs sampling (~1mm)

Tracking strategy

- energy resolution 0.5% --> reject non-2.5MeV
- tracking --> reject α , γ (98%: compton)

10atm, Xe100%, 15mm pitch, 1µs sampling (~1mm)

- 1. AXEL project
- 2. Fundamental studies
- 3. Prototype detector
- 4. Future prospect
- 5. Summary

Electric field simulation (FEMM)

- Line of electric field are collected
- Uniformity of EL yield is 0.47% (sigma)

$$dN_{ph}/dx = 70(E/p - 1.0)p$$

MPPC linearity

- Check large and long pulse photon response (~10⁵/5 μ s)
- Saturation was observed
 - "simultaneous hit" and "decrease of bias voltage"
- After correction, expected residual fluctuation is 0.11%

- 1. AXEL project
- 2. Fundamental studies
- 3. Prototype detector
- 4. Future prospect
- 5. Summary

Overall view

• Kyoto Univ. 3F (welcome!)

Prototype detector

- Detection volume
 - 6*6*6cm³
 - 5.7g (4atm Xe)
- Sensor
 - WLS coated MPPC x64
 - VUV-PMT x2
- Electric field
 - EL: 2.4kV/cm/atm
 - drift: 50V/cm/atm

Event sample

- waveforms of MPPC and PMT
 - EL light & scintillation light are observed

- Fiducial cut
 - veto region: outer 28 MPPCs

red: veto

- Time dependence correction
 - Impurities decrease EL gain
 - Gas circulation system is now under construction

• EL-gain correction

1500

1000

500

- photon num of 30keV γ-ray for "each cell"
 - One MPPC(red) selection is too strict, so blue MPPCs are allowed
 - EL crosstalk suppression structure is under designing

• Hit volume correction

1500

1000

500

- strong correlation was obtained
- (recombination is seen ?)

Energy resolution

- Four peaks are observed
- FWHMs are evaluated by Gaussian fitting

	Κα	κβ	escape	full
energy	29.8keV	33.6keV	92.3keV	122keV
photon #	6605	7516	18711	24710
FWHM	7.9%	8.7%	5.6%	4.7%

Energy resolution estimation at Q

- Estimated resolution is 1~3.6%(FWHM) @2.5MeV
 - Several factor for the target
- We plan to improve energy resolution by
 - VUV-MPPC
 - gas circulation
 - crosstalk suppress
 - etc...
- We also plan to make larger detector

Upgrades

- Long field cage
 - For 511keV γ-ray
- New VUV-sensitive MPPCs
 - instead of WLS-painted MPPC
 - operation test with ⁵⁷Co seems OK
- Gas circulation
 - pump (last component) is now vacuum test
- EL crosstalk suppression
 - designing

VUV-MPPCs

are installed

- 1. AXEL project
- 2. Fundamental studies
- 3. Prototype detector
- 4. Future prospect
- 5. Summary

Our goal is

- $0\nu\beta\beta$ discovery !!!
 - or exclude inverted hierarchy
- Expected event rate
 - 0.5 count/year/ton ($m_{\beta\beta}$ =10meV)
 - We need ton scale detector
 - BG rate requirement in ROI < ~1 count/year

	volume	mass	MPPC #	purpose
current	0.216L	~10g	64	ELCC test (122keV, 511keV)
next (2016~2017) next2 (2018~)	~200L	~10kg	~2000	2.5MeV demonstration enriched ¹³⁶ Xe
future (202X~)	~18000L	~1ton	~31000	$0\nu\beta\beta$ search

Next prototype detector

- Purpose
 - energy resolution @ 2.5MeV(Q value)
 - establish large size technique
 - tracking ability
 - BG observation
- Status
 - readout board --> <u>Tanaka's poster</u>
 - structure : designing with Geant4
 - clean room : constructed large size
 - gas system : considering safety devices
 - etc...

Most serious BG for AXEL

Avogadro #

6.02*10²³

Х

 $4.468*10^9$

 $\frac{N_A}{M_{238U}}$

- γ -ray from ²¹⁴Bi is our enemy
- chamber mass : 25 ton
- expected BG is 1000 cts/year

Contamination

2.9*10⁻¹² g/g

atomic weight

228

Mass

~25*10⁶ g

 $R_{BG} = M \times C \times$

24

Tracking simulation

- Geant4 + diffusion
- Two blobs detected
- 1/10 reduction will be expected
 - (still remain 100 cts)

signal efficiency [%] (with BG 10%)

	2.5	5	7.5	10 [mn	n]
30atm Xe100%	64.7	60.5	51.4	36.7 25	20 10
30atm Xe75%+He25%	77.6	73.2	69.2	59.5	-40 -30
30atm Xe50%+He50%	80.5	77.4	73.9	67.1	- 70 - 60
30atm Xe25%+He75%	84.6	75.8	73.0	71.0	90 80
20stm Xo25%+Ho75%	84.6	75.8	73.0	71.0	1 -9

Pressurized water shield

- Concept
 - Similar structure to KamLAND-Zen
 - Thickness : 37.3mm --> 3mm (ex. EXO achieved 1.37mm)
 - or thinner thickness like balloon
 - BG will be 10 counts/year
- Plan
 - pressure test for various materials
 - construct small system

Summary

<u>AXEL project</u>

- $0\nu\beta\beta$ search using high pressure xenon gas TPC with high energy resolution, large mass and tracking ability
- New readout idea : ELCC (electric field simulation is OK)
- Linearity for $1e5/5\mu s$: correction fluctuation is 0.12% (OK)
- Prototype detector
 - Energy resolution : 1~3.6%(FWHM) at Q (many improvements are ongoing)
 - Long size + VUV-MPPC result will come soon (511keV)
- Future prospects
 - We started making large size detector --> Tanaka's poster
 - γ-ray BG from ²¹⁴Bi in the chamber (heaviest component) will be reduced by tracking and water shield: 1000->100->10

Linearity measurement

We measured MPPC's linearity by using PMT as a reference

- Irradiated LED light up to $\sim 10^5/5\mu s$
- Observed saturation is slightly larger than expected from the number of pixels and recovery time. Under investigation
- After correction, expected residual fluctuation is 0.12% (< 0.5% : target energy resolution)

ELCC demonstration by UV-PMT

<u>Setup</u>

- 1atm Xe
- UV-PMT (H3178-51Q)
- all cells are merged
- detection size: 28x28x55mm

energy resolution (FWHM)

- 13.8% @30keV (fit right edge)
- 1.5% @2.5MeV (converted)

Voltage for 1atm

- Drift
 - driftV change small at >30 V/cm
- Anode
 - 8kV is enough

fluctuation (P=1.0atm)

Linearity measurement

Result

• Slowly saturated (25mm pitch is better)

MPPC pixel pitch	50µm	25µm	VUV 50µm
photon# to keep linearity	1.5 x 10 ⁴	2.5 x 10 ⁴	1.5 x 10 ⁴
N _{pixel}	3600	14400	3600

• After correction, fluctuation is 0.12% (< 0.5% : aim of Eres)

Linearity measurement

• photon rate per pixel : $k[1/(\text{pixel} \cdot s)] = \frac{N_{\text{true}}}{N_{\text{pixel}} \cdot \Delta t}$

• Observed photon# :
$$N_{obs} = \frac{N_{true}}{1 + k\tau}$$

Fluctuation of correction

$$\frac{\Delta N}{N} = \frac{N_{\text{true}} - N_{\text{obs}}}{N_{\text{true}}} = \sqrt{\frac{\tau}{N_{\text{pixel}} \cdot \Delta t}} = \sqrt{\frac{25\text{ns}}{3600 \cdot 5\mu\text{s}}} = 0.0012$$

Prototype detector : gas system

High voltage optimization

- Electric field
 - E_{anode} = 2.4kV/cm/atm
 - $E_{drift} = 50V/cm/atm$
- correction efficiency (by FEMM) is 100%

Data acquisition

electronics

- low pass filter (64ch)
 - large time constant : 50msec
 - large capacitance : 1uF
 - for large and long pulse

E_{anode} dependence

- Linear dependence --> OK
- We can supply higher E_{anode}

Yield calculation

- α : detected EL photon# per electron (measured)
- P_{coll} : collection efficiency of electric field line (100%)
- Y : Yield of EL (calcutated)
- Ω : solid angle of EL photon to MPPC (12.9%)
- P_{trans} : WLS translation efficiency 50%
- 1/2 : translated photon direction (up/down)
- PDE : PDE of MPPC (35%)

cell pitch

Garfield++

• finer pitch is better (but ch# increase)

Tracking demonstration (α-ray)

- Detect EL light
 - OK !
- Track width is too large ?
 - large Diff_{tra} --> High Pressure
 - blurred at WLS --> UV-MPPC

-3

-2

44

Readout electronics

- For 1ton detector, MPPC # will be 50000
- AFTER chip (ASIC) 72ch 511sampling
- developing board for AFTER

Parameter	Value
Number of channels	72
Samples per channel	511
Dynamic Range	$2~\mathrm{V}$ / 10 MIPs on 12 bits
MIP charge	12 fC to 60 fC
MIP/Noise ratio	100
Gain	4 values from 4 mV / fC to 18 mV / fC
"Detector" capacitor range	20 pF -30 pF
Peaking Time	100 ns to 2 µs (16 values)
INL	1% 0-3 MIPs ; 5% 3-10MIPs
Sampling frequency	1 MHz to 50 MHz
Readout frequency	20 MHz to 25 MHz
Polarity of detector signal	Negative (T2K) or Positive
Test	1 among 72 channels or all

45 IEEE Transactions on Nuclear Science 55 3 (2008) 1744

Comparison of $0\nu\beta\beta$, e and α

- Event topology by tracking
 - α BG is well rejected
 - γ BG with 2.5MeV photoelectric absorption is difficult to reject perfectly.
 - (multi site events such as Compton scattering can be rejected)

Comparison of $0\nu\beta\beta$, e and α

- Event topology by tracking
 - α BG is well rejected
 - γ BG with 2.5MeV photoelectric absorption is difficult to reject perfectly.
 - (multi site events such as Compton scattering can be rejected)

View scales are different. Cell size is same.

Rate of ²¹⁴Bi y-ray

- Attenuation length of 2.5MeV γ -ray
 - 140cm in 30atm Xe -> self shielding is not effective
 - 20cm in water -> external BG stop by water shield
- Materials of detector must be checked
 - Vessel is the most heavy component (10ton : copper)
 - EXO uses clean copper for vessel : U < 5ppt 95% U.L.

How to deal with ²¹⁴Bi?

- Improve energy resolution
 - Energy difference between $0\nu\beta\beta$ and γ from $^{214}Bi~$ is 0.44%
 - Intrinsic energy resolution is 0.25%
- Put some shield "in" the vessel
 - pressure vessel become huge
- Make clean vessel
 - purifying copper
- Make light vessel
 - titanium is strong and light (NEXT group's approach)
 - need 2 ton --> still need purification
- --> we noticed rejection of high energy γ is not so easy⁴⁹

Stopping power

- Attenuation length of 2.5MeV $\gamma\text{-ray}$
 - 140cm in 30atm Xe
 - 20cm in water
- Shielding
 - Xe self shielding is not effective

Electric Field and electron drift

Directional dark matter Search

Approaches to directionality detection (3): Columnar recombination and Inferring direction without track image

Measure recombination rate from scintillation yield and ionization yield

We are planning to apply magnetic field to enhance the recombination yield for one direction

Recombination measurement

- Purpose
 - measure recombination and ionized signal (5.4MeV α)
 - test putting magnetic field

Recombination measurement

• Status

construction just started

