DM searches at LHC/ATLAS

Osamu Jinnouchi (Tokyo Institute of Technology)

2016. 5. 12 at The University of Tokyo Revealing the history of the universe with underground particle and nuclear research 2016

- DM Collider searches & results from Run-1
- Analysis approach for LHC Run-2
- LHC & ATLAS
- Results from Run-2
 - mono-X searches
 - di-jet searches
- Summary

© 2016 www.funflector.com

The 3rd direction in DM searches

 LHC provides complementary approach in DM hunting

Complementary also in kinematics coverage

Advantages of knowing the initial state particle species/energies

Collider signature

Momentum Conservation :

Missing Transverse Energy (MET = DM) $\leftarrow \rightarrow$ High pT visible object(s)

highest pT (~970 GeV) single-jet event observed in the ATLAS 13 TeV data

DM models at LHC (in Run-1)

 Effective Field Theory (EFT) : provides simple framework to compare collider and non-collider experiments

Eur. Phys. J. C75 (2015) 299 Name Initial state Type Operator $\frac{m_q}{M_*^2}\chi^{\dagger}\chi\bar{q}q$ C1scalar Scalar qq \boldsymbol{q} $\frac{1}{4M_\star^2}\chi^\dagger \chi \alpha_{\rm s} (G^a_{\mu\nu})^2$ C5scalar ggsuppression $\frac{m_q}{M_{\star}^3} \bar{\chi} \chi \bar{q} q$ D1 scalar qqscale M* Dirac Fermion $\frac{1}{M_{\star}^2}\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q$ D5vector qq \bar{q} DM $\frac{1}{M_{\star}^2}\bar{\chi}\gamma^{\mu}\gamma^5\chi\bar{q}\gamma_{\mu}\gamma^5q$??? D8 axial-vector qq $\frac{1}{M_{\star}^2} \bar{\chi} \sigma^{\mu\nu} \chi \bar{q} \sigma_{\mu\nu} q$ D9tensor qqignore inside the bubble $\frac{1}{4M_{\star}^3}\bar{\chi}\chi\alpha_{\rm s}(G^a_{\mu\nu})^2$ D11 scalar gg

- Limited validity : assumption m_{mediator} >> Q(interaction) (Fermi constant like couplings)
- Frequently used during Run-1 8TeV (2010–2012), often criticized
- Migrating to "simplified model" from the end of Run-1

8TeV Results (EFT limits vs. Non-collider WIMP searches)

Collider searches insensitive to WIMP mass (when lighter than MET, jet cuts) Limit keeps constant below a few GeV \rightarrow Complementary to non-collider exp.

DM and the 750 GeV resonance

- Local (Global) Z=3.9 (2.0) σ
- 6% width $\Gamma_x \sim 45 \text{GeV}$

ATLAS-CONF-2016-018

- Large local significances observed in both ATLAS and CMS around 750 GeV
- "to be confirmed" with higher luminosity in 2016
- ATLAS prefers large width approximation (~45GeV), while CMS prefers narrow width (<1 GeV) where detector intrinsic resolution is ~10 GeV
- IF ATLAS is correct, particle X(750 GeV) may decay into invisibles \rightarrow possible connection to DM

DM searches in LHC Run-2

Simplified Models

- General framework valid at high (any) Q²
- Recommendations
 - DM@LHC14 (arXiv:1506.03116)
 - LHCDMWG (arXiv:1603.04156, arXiv:1507.00966)
- Mediator particle connects the SM quarks to DM particles
- Model depends on four parameters ($m_{DM},\ M_{MED},\ g_q,\ g_{DM}$)

Resu	ts shown in <i>n</i>	n_{DM} VS	S. M_N	$\stackrel{\scriptstyle {\scriptstyle I\!ED}}{Q}$ plane DM
	Mediator Type	g_{DM}	g_q	
	Vector	1	0.25	\mathbf{y}_{q}
	Axial-Vector	1	0.25	
	Scalar	1	1	$q' \sim DM$
	Pseudo Scalar	1	1	$g, \gamma, W, Z, H, \dots$

DM searches at LHC

- Mediator couples to DM with g_{DM} , to SM quarks with g_q
- DM cannot be reconstructed in detector
 → Look for accompanying signature (mono-X)
- Mediator can also decay into quark (Jet) pairs
 → Di-jet resonance signature

DM searches at LHC

- Simplified models separate the couplings to DM and SM
 → possibilities for more complex interpretations
- Complementarity between search channels e.g. mono-X and di-jet arXiv:1503.05916

LHC & ATLAS 12

2015 LHC is back in business (Run-2)

13 TeV collisions

ATLAS detector

Performance for TeV signature

Reconstruction of Jet, MET, High-pT objects (boosted) important to explore TeV region

Performance for TeV signature (cont'd)

Boosted H tagging

Double b-tagging, jet-mass, sub-structure

DM production Mono-Jet + MET 17

Most sensitive mono-X +MET channel with large stats (α_{QCD} large)

- Background
 - hard to model MET
 - use Z→ll, W→lv to model main
 Z→vv bkgs
 - detector effects, non-collision bkgs (estimates data driven)
- Results (no excess)
 - 21447 events observed
 - 21730 ± 940 bkgs events expected
 - \rightarrow limit setting

Mono-jet interpretation (13 TeV)

DM Productions beyond Mono-Jet

Mono-photon searches (13 TeV)

$\alpha_{\rm EM} << \alpha_{\rm QCD}$ \rightarrow lower statistics than mono-jet relatively low mass Signal region

- Background (control region)
 - $Z(\rightarrow vv) + \gamma$ (2e, 2µ CR)
 - $W(\rightarrow \ell v) + \gamma (1 \mu CR)$
 - γ +jets (γ +jets lower MET CR)
- Results (no excess)
 - 264 observed events
 - 295±34 BG events expected

SM BG consistent \rightarrow Limit setting

Mono-photon interpretation (13 TeV)

Limits as a function of DM & mediator mass

Comparison against non-collider results

Constraints on DM simplified model : Axial vector mediator (fixed couplings) Mediator mass below 0.7 TeV excluded (for 100GeV DM)

WIMP-proton cross section above $\sim 10^{-41}$ cm² excluded (for DM mass < 150GeV)

Mono-Z/W searches (13 TeV)

Search for Dark Matter associating with hadronically decaying W/Z

ATLAS-CONF-2015-080

- Background (CR)
 - Z+jets (2 muon)
 - W+jets (1 muon & no b-jet)
 - ttbar (1 muon & 1 b-jet)
 - simultaneous fit with 3 normalization factors
- largest systematics from modeling of large radius jet (~10%)
- No excess observed \rightarrow Limit

Process	events
Z+jets	519 ± 31
W + jets	326 ± 22
$t\bar{t}$ and single-top	217 ± 18
Diboson	88 ± 12
Total Background	1150 ± 30
Data	1143

8TeV 20.3 fb⁻¹ so far had stronger constraints on D5 (M*=1800 GeV) Phys. Rev. Lett 112, 041802 (2014)

Mono-Higgs searches (13 TeV)

Run: 280464 Event: 478442529 2015-09-27 22:09:07 CEST

DM Searches a Di-jet production

Di-jet searches (13 TeV)

- Look for resonance qq, qg and gg
- Most sensitive benchmark search among BSM channels
- Data driven background fit
 - Fit smooth spectrum

 $f(z) = p_1(1-z)^{p_2} z^{p_3 + p_4 \log z}$

- empirical function
- Excess findings in m_{ii} distribution
 - Bumphunter
 - Tailhunter

No Significant Excess observed

Di-jet interpretation (13 TeV)

- Limits on extra Z'- gauge boson
 - Ieptophobic model
 - limits on g_q coupling for different Z' masses

Di-jet simplified model results

- Complementary among the search channels
- With assumed couplings ($g_q=0.25$, $g_{DM}=1$), above regions are excluded

Low mass di-jet events

- DM/mediator may still hide in low mass with small couplings
- Low mass search \rightarrow limited readout bandwidth and storage space
- Online data scouting (Trigger level analysis) to reduce event size and increase recorded events

2016 Collisions has Just Started (May 6th)

ATLAS Events at 13 TeV - First 2016 Stable Beams

10% of the design luminosity \rightarrow will be 100%

Conclusion

- LHC/ATLAS Run-2 started (2015, 3.2 fb⁻¹)
- DM searches had new interesting results
- Searches extended in channels, parameter spaces, now uniformly interpreted via 'simplified model'
- Comparison with DD/ID experiments became valid
- LHC DM searches are complementary to non-collider searches
- LHC has just restarted operation for 2016

expecting much higher integrated luminosity in 2016 (~25 fb⁻¹ is expected)

• More exciting results are around the corner, stay tuned