Hydrodynamic simulations and dark matter direct detection

Nassim Bozorgnia

GRAPPA Institute University of Amsterdam

Based on work done with F. Calore, M. Lovell, G. Bertone, and the EAGLE team arXiv: 1601.04707

Outline

- Dark matter direct detection
- Hints for a signal versus constraints
- DM distribution from hydrodynamic simulations
 - Identifying Milky Way analogues
 - Local DM density and velocity distribution
- Analysis of direct detection data
- Summary

Outline

Dark matter direct detection

- Hints for a signal versus constraints
- DM distribution from hydrodynamic simulations
 - Identifying Milky Way analogues
 - Local DM density and velocity distribution
- Analysis of direct detection data
- Summary

APOSTLE Simulations, 1511.01098

Nassim Bozorgnia University of Tokyo, 12 May 2016

Very little is known about the details of the dark matter (DM) halo in the local neighborhood. ⇒ significant uncertainty when interpreting data from direct detection experiments.

- ► Very little is known about the details of the dark matter (DM) halo in the local neighborhood. ⇒ significant uncertainty when interpreting data from direct detection experiments.
- Usually the Standard Halo Model is assumed:
 - ► isothermal sphere: \(\rho(r)\) ~ r^2\), spherical self-gravitating system in hydrostatic equilibrium
 - isotropic Maxwell-Boltzmann velocity distribution
 - local DM density: $ho_{\chi} \sim$ 0.3 GeV cm⁻³
 - typical DM velocity: $\bar{v} \simeq 220$ km/s

- ► Very little is known about the details of the dark matter (DM) halo in the local neighborhood. ⇒ significant uncertainty when interpreting data from direct detection experiments.
- Usually the Standard Halo Model is assumed:
 - ► isothermal sphere: \(\rho(r)\) ~ r^2\), spherical self-gravitating system in hydrostatic equilibrium
 - isotropic Maxwell-Boltzmann velocity distribution
 - local DM density: $ho_{\chi} \sim$ 0.3 GeV cm⁻³
 - typical DM velocity: $\bar{v} \simeq 220$ km/s
- Numerical simulations of galaxy formation predict dark matter velocity distributions which can deviate from a Maxwellian.

Dark matter direct detection

Strong tension between hints for a signal and exclusion limits:

These kinds of plots assume the Standard Halo Model and a specific DM-nucleus interaction.

Our aim

- Use high resolution hydrodynamic simulations to determine the local DM distribution.
- Identify Milky Way-like galaxies from simulated halos, by taking into account observational constraints on the Milky Way (MW).
- Extract the local DM density and velocity distribution for the selected MW analogues.
- Analyze the data from direct detection experiments, using the predicted local DM distributions of the selected haloes.

Direct detection principles

- Look for energy deposited in low-background detectors by the scattering of WIMPs in the dark halo of our galaxy.
- WIMP-nucleus collision:

Elastic recoil energy:

$$E_R = \frac{2\mu_{\chi A}^2 v^2}{m_A} \cos^2 \theta_{\rm lab}$$

 θ_{lab} : angle of the nuclear recoil relative to the initial WIMP direction

Minimum WIMP speed required to produce a recoil energy E_R:

$$v_m = \sqrt{rac{m_A E_R}{2 \mu_{\chi A}^2}}$$

The differential event rate

The differential event rate (event/keV/kg/day):

$$R(E_R, t) = \frac{\rho_{\chi}}{m_{\chi}} \frac{1}{m_A} \int_{v > v_m} d^3 v \frac{d\sigma_A}{dE_R} v f_{det}(\mathbf{v}, t)$$

The differential event rate

The differential event rate (event/keV/kg/day):

$$R(E_R, t) = \frac{\rho_{\chi}}{m_{\chi}} \frac{1}{m_A} \int_{v > v_m} d^3 v \frac{d\sigma_A}{dE_R} v f_{det}(\mathbf{v}, t)$$

For the standard spin-independent and spin-dependent scattering:

$$\frac{d\sigma_A}{dE_R} = \frac{m_A}{2\mu_{\chi A}^2 v^2} \sigma_0 F^2(E_R)$$

The differential event rate

The differential event rate (event/keV/kg/day):

.

where

$$R(E_R, t) = \frac{\rho_{\chi}}{m_{\chi}} \frac{1}{m_A} \int_{v > v_m} d^3 v \frac{d\sigma_A}{dE_R} v f_{det}(\mathbf{v}, t)$$

For the standard spin-independent and spin-dependent scattering:

$$\frac{d\sigma_{A}}{dE_{R}} = \frac{m_{A}}{2\mu_{\chi A}^{2}v^{2}}\sigma_{0}F^{2}(E_{R})$$

$$R(E_{R}, t) = \underbrace{\frac{\sigma_{0}F^{2}(E_{R})}{2m_{\chi}\mu_{\chi A}^{2}}}_{\text{particle physics}} \underbrace{\frac{\rho_{\chi}\eta(v_{m}, t)}{\text{astrophysics}}}_{\text{astrophysics}}$$

$$\eta(v_{m}, t) \equiv \int_{v > v_{m}} d^{3}v \ \frac{f_{\text{det}}(\mathbf{v}, t)}{v} \qquad \text{halo integral}$$

Nassim Bozorgnia University of Tokyo, 12 May 2016

- Local DM density: normalization factor in the event rate.
- ► DM velocity distribution: enters in the halo integral. ⇒ Different experiments (energy threshold, target nuclei) probe different DM speed ranges, and thus their dependence on the DM velocity distribution varies.

Annual modulation

Due to the motion of the Earth around the Sun, the velocity distribution in the Earth's frame changes in a year.

Annual modulation

Due to the motion of the Earth around the Sun, the velocity distribution in the Earth's frame changes in a year.

$$f_{\text{det}}(\mathbf{v}, t) = f_{\text{sun}}(\mathbf{v} + \mathbf{v}_{e}(t)) = f_{\text{gal}}(\mathbf{v} + \mathbf{v}_{s} + \mathbf{v}_{e}(t))$$

Sun's velocity wrt the Galaxy: $v_s \approx (0, 220, 0) + (10, 13, 7)$ km/s Earth's velocity: $v_e \approx 30$ km/s

Dark matter velocity distribution

• What is $f_{gal}(\mathbf{v})$? The answer depends on the halo model.

Dark matter velocity distribution

- What is $f_{gal}(\mathbf{v})$? The answer depends on the halo model.
- In the SHM, a truncated Maxwellian velocity distribution is assumed

$$f_{\text{gal}}(\mathbf{v}) pprox \begin{cases} N \exp(-\mathbf{v}^2/\bar{\mathbf{v}}^2) & v < v_{\text{esc}} \\ 0 & v \ge v_{\text{esc}} \end{cases}$$

with $\bar{\nu}\simeq$ 220 km/s, $\nu_{esc}\simeq$ 550 km/s.

Dark matter velocity distribution

- What is $f_{gal}(\mathbf{v})$? The answer depends on the halo model.
- In the SHM, a truncated Maxwellian velocity distribution is assumed

$$f_{\text{gal}}(\mathbf{v}) pprox \begin{cases} N \exp(-\mathbf{v}^2/\bar{\mathbf{v}}^2) & v < v_{\text{esc}} \\ 0 & v \ge v_{\text{esc}} \end{cases}$$

with $\bar{\nu}\simeq$ 220 km/s, $\nu_{esc}\simeq$ 550 km/s.

- DM distribution could be very different from Maxwellian:
 - Most likely both smooth and un-virialized components.
 - the smooth component may not be Maxwellian.

Outline

Dark matter direct detection

Hints for a signal versus constraints

- DM distribution from hydrodynamic simulations
 - Identifying Milky Way analogues
 - Local DM density and velocity distribution
- Analysis of direct detection data
- Summary

Hints for a signal versus constraints

We consider data from four experiments:

Hints for a signal:

- DAMA: scintillation (Nal)
- CDMS-Si: ionization + phonons (Si)

Null results:

- LUX: scintillation + ionization (Xe)
- SuperCDMS: ionization + phonons (Ge)

DAMA annual modulation signal

Nal detectors; 9.3σ modulation signal; 1.33 ton yr (14 yrs)

 \blacktriangleright Two possible WIMP masses: $m_\chi \sim$ 10 GeV, $m_\chi \sim$ 80 GeV

CDMS-Si excess of events

- 140.2 kg day in 8 Si detectors. Observed 3 events against expected background of 0.62 events.
- WIMP + background hypothesis favored over the known background estimate at ~ 3σ.

• Maximum likelihood at $m_{\chi} = 8.6 \text{ GeV}$

Constraint from LUX and SuperCDMS

Assuming the Standard Halo Model and spin-independent elastic scattering:

Outline

- Dark matter direct detection
- Hints for a signal versus constraints
- DM distribution from hydrodynamic simulations
 - Identifying Milky Way analogues
 - Local DM density and velocity distribution
- Analysis of direct detection data
- Summary

Hydrodynamic simulations

 We use the EAGLE and APOSTLE hydrodynamic simulations (DM + baryons).

Name	L (Mpc)	N	<i>m</i> _g (M _☉)	<i>m</i> _{dm} (M _☉)
EAGLE IR	100	6.8 × 10 ⁹	1.81 × 10 ⁶	$9.70 imes10^{6}$
EAGLE HR	25	$8.5 imes10^8$	$2.26 imes10^5$	$1.21 imes10^{6}$
APOSTLE IR	_	_	$1.3 imes10^5$	$5.9 imes10^5$

► APOSTLE IR: zoomed simulations of Local Group-analogue systems, comparable in resolution to EAGLE HR.

Hydrodynamic simulations

 We use the EAGLE and APOSTLE hydrodynamic simulations (DM + baryons).

Name	L (Mpc)	N	$m_{ m g}~({ m M}_{\odot})$	<i>m</i> _{dm} (M _☉)
EAGLE IR	100	6.8 × 10 ⁹	1.81 × 10 ⁶	$9.70 imes10^{6}$
EAGLE HR	25	$8.5 imes10^8$	$2.26 imes10^5$	$1.21 imes10^{6}$
APOSTLE IR	-	-	$1.3 imes10^5$	$5.9 imes10^5$

- ► APOSTLE IR: zoomed simulations of Local Group-analogue systems, comparable in resolution to EAGLE HR.
- These simulations are calibrated to reproduce the observed distribution of stellar masses and sizes of low-redshift galaxies.

Hydrodynamic simulations

 We use the EAGLE and APOSTLE hydrodynamic simulations (DM + baryons).

Name	L (Mpc)	N	$m_{ m g}~({ m M}_{\odot})$	<i>m</i> _{dm} (M _☉)
EAGLE IR	100	6.8 × 10 ⁹	1.81 × 10 ⁶	$9.70 imes10^{6}$
EAGLE HR	25	$8.5 imes10^8$	$2.26 imes10^5$	$1.21 imes10^{6}$
APOSTLE IR	-	-	$1.3 imes10^5$	$5.9 imes10^5$

- APOSTLE IR: zoomed simulations of Local Group-analogue systems, comparable in resolution to EAGLE HR.
- These simulations are calibrated to reproduce the observed distribution of stellar masses and sizes of low-redshift galaxies.
- Companion dark matter only (DMO) simulations were run assuming all the matter content is collisionless.

EAGLE simulations

EAGLE project, 1407.7040

Intergalactic gas: blue \Rightarrow green \Rightarrow red with increasing temperature.

Nassim Bozorgnia University of Tokyo, 12 May 2016

Milky Way analogues

Nassim Bozorgnia University of Tokyo, 12 May 2016

Identifying Milky Way analogues

Usually a simulated halo is classified as *MW-like* if it satisfies the MW mass constraint, which has a large uncertainty. We show that the mass constraint is not enough to define a MW-like galaxy.

Identifying Milky Way analogues

- Usually a simulated halo is classified as *MW-like* if it satisfies the MW mass constraint, which has a large uncertainty. We show that the mass constraint is not enough to define a MW-like galaxy.
- Consider simulated haloes with 5 × 10¹¹ < M₂₀₀/M_☉ < 2 × 10¹³ and select the galaxies which most closely resemble the MW by the following criteria:
 - Rotation curve from simulation fits well the observed MW kinematical data from: [locco, Pato, Bertone, 1502.03821].
 - The total stellar mass of the simulated galaxies is within the 3σ observed MW range: 4.5 × 10¹⁰ < M_{*}/M_☉ < 8.3 × 10¹⁰.

Observations vs. simulations

Observations vs. simulations

Goodness of fit to the observed data:

N = 2687 is the total number of observational data points used.

► Minimum of the reduced χ^2 occurs within the 3σ measured range of the MW total stellar mass. \Rightarrow haloes with correct MW stellar mass have rotation curves which match well the observations.

Observations vs. simulations

Goodness of fit to the observed data:

N = 2687 is the total number of observational data points used.

- ► Minimum of the reduced χ^2 occurs within the 3σ measured range of the MW total stellar mass. \Rightarrow haloes with correct MW stellar mass have rotation curves which match well the observations.
- ► We focus only on the selected EAGLE HR and APOSTLE IR haloes due to higher resolution ⇒ total of 14 MW analogues.

- Dark matter direct detection
- Hints for a signal versus constraints
- DM distribution from hydrodynamic simulations
 - Identifying Milky Way analogues
 - Local DM density and velocity distribution
- Analysis of direct detection data
- Summary
Dark matter density profiles

Spherically averaged DM density profiles derived from mass enclosed in a given spherical shell between *R* and $R + \delta R$:

Dark matter density profiles

Spherically averaged DM density profiles derived from mass enclosed in a given spherical shell between *R* and $R + \delta R$:

- ▶ In the inner 1.5 2 kpc: DM density shallower than NFW.
- Between 1.5 6/8 kpc: baryons lead to a steepening of the DM profile.

Local dark matter density

- Need the DM density at the position of the Sun.
- Consider a torus aligned with the stellar disc with 7 kpc < R < 9 kpc, and -1 kpc < z < 1 kpc.

- **EAGLE HR**: local $\rho_{\rm DM} = 0.42 0.73 \, {\rm GeV} \, {\rm cm}^{-3}$.
- **APOSTLE IR**: local $\rho_{\rm DM} = 0.41 0.54 \, {\rm GeV} \, {\rm cm}^{-3}$.

In the galactic rest frame:

In the galactic rest frame:

Comparison to DMO simulations:

Nassim Bozorgnia

University of Tokyo, 12 May 2016

► Baryons deepen the gravitational potential of the Galaxy in the inner regions, resulting in more high velocity particles. ⇒ The peak of the DM speed distribution is shifted to higher speeds when baryons are included in the simulations.

- ► Baryons deepen the gravitational potential of the Galaxy in the inner regions, resulting in more high velocity particles. ⇒ The peak of the DM speed distribution is shifted to higher speeds when baryons are included in the simulations.
- The Maxwellian distribution with a free peak provides a better fit to most haloes in the hydrodynamic simulations compared to their DMO counterparts.

- ► Baryons deepen the gravitational potential of the Galaxy in the inner regions, resulting in more high velocity particles. ⇒ The peak of the DM speed distribution is shifted to higher speeds when baryons are included in the simulations.
- The Maxwellian distribution with a free peak provides a better fit to most haloes in the hydrodynamic simulations compared to their DMO counterparts.
- The best fit peak speed of the Maxwellian distribution in the hydrodynamic simulations: 223 – 289 km/s.

Distributions of radial, azimuthal, and vertical velocity components:

Comparison to DMO simulations:

- ► The three components of the DM velocity distribution are not similar. ⇒ clear velocity anisotropy at the Solar circle.
- The distributions of the radial and vertical velocity components are peaked around zero.

- ► The three components of the DM velocity distribution are not similar. ⇒ clear velocity anisotropy at the Solar circle.
- The distributions of the radial and vertical velocity components are peaked around zero.
- Four haloes have a significant positive mean azimuthal speed (µ > 20 km/s). The DMO counterparts of these haloes don't show evidence of rotation.

- ► The three components of the DM velocity distribution are not similar. ⇒ clear velocity anisotropy at the Solar circle.
- The distributions of the radial and vertical velocity components are peaked around zero.
- Four haloes have a significant positive mean azimuthal speed (µ > 20 km/s). The DMO counterparts of these haloes don't show evidence of rotation.
- Is this pointing to the existence of a "dark disc"?
 - Among the four rotating haloes, two haloes have a rotating DM component in the disc with mean velocity comparable (within 50 km/s) to that of the stars.
 - ► Hint for the existence of a co-rotating dark disc in two out of 14 MW-like haloes. ⇒ dark discs are relatively rare in our halo sample.

 The halo integral parametrizes the astrophysics dependence of the event rate,

$$\eta(\mathbf{v}_m,t) \equiv \int_{\mathbf{v} > \mathbf{v}_m} d^3 \mathbf{v} \, \frac{f_{\text{det}}(\mathbf{v},t)}{\mathbf{v}}, \ R(E_R,t) = \frac{\rho_{\chi} \sigma_0 \, F^2(E_R)}{2m_{\chi} \mu_{\chi A}^2} \, \eta(\mathbf{v}_m,t)$$

Need the velocity distributions in the detector reference frame:

$$f_{\text{det}}(\mathbf{v}, t) = f_{\text{gal}}(\mathbf{v} + \mathbf{v}_s + \mathbf{v}_e(t))$$

 The halo integral parametrizes the astrophysics dependence of the event rate,

$$\eta(\mathbf{v}_m,t) \equiv \int_{\mathbf{v} > \mathbf{v}_m} d^3 \mathbf{v} \, \frac{f_{\text{det}}(\mathbf{v},t)}{\mathbf{v}}, \ R(E_R,t) = \frac{\rho_{\chi} \sigma_0 \, F^2(E_R)}{2m_{\chi} \mu_{\chi A}^2} \, \eta(\mathbf{v}_m,t)$$

Need the velocity distributions in the detector reference frame:

$$f_{\text{det}}(\mathbf{v}, t) = f_{\text{gal}}(\mathbf{v} + \mathbf{v}_s + \mathbf{v}_e(t))$$

Sun's velocity wrt the Galaxy: $v_s \approx (0, v_\star, 0) + (11.10, 12.24, 7.25)$ km/s v_\star : local circular speed for the **simulated halo**.

Significant halo-to-halo scatter in the halo integrals.

- Significant halo-to-halo scatter in the halo integrals.
- Halo integrals for the best fit Maxwellian velocity distribution (peak speed 223 – 289 km/s) fall within the 1σ uncertainty band of the halo integrals of the simulated haloes.

- Significant halo-to-halo scatter in the halo integrals.
- Halo integrals for the best fit Maxwellian velocity distribution (peak speed 223 – 289 km/s) fall within the 1σ uncertainty band of the halo integrals of the simulated haloes.
- Difference between simulated haloes and SHM Maxwellian due to the different peak speed of the DM velocity distribution.

Comparison to DMO simulations:

- Including baryons in the simulations results in a shift of the tails of the halo integrals to higher velocities with respect to the DMO case.
- Speed distributions of DMO haloes not captured well by a Maxwellian. Large deficits at the peak, and an excess at low and very high velocities compared to the best fit Maxwellian. ⇒ Halo integrals of DMO haloes quite different from best fit Maxwellian halo integrals.

Nassim Bozorgnia

University of Tokyo, 12 May 2016

- Two other recent works studying implications of hydrodynamic simulations for direct detection:
 - Kelso et al. 1601.04725
 - Sloane et al. 1601.05402
- Our results agree in that halo integrals and hence direct detection event rates obtained from a Maxwellian velocity distribution with a free peak speed are similar to those obtained directly from the simulated haloes.

- Two other recent works studying implications of hydrodynamic simulations for direct detection:
 - Kelso et al. 1601.04725
 - Sloane et al. 1601.05402
- Our results agree in that halo integrals and hence direct detection event rates obtained from a Maxwellian velocity distribution with a free peak speed are similar to those obtained directly from the simulated haloes.
- A Maxwellian velocity distribution with a peak speed constrained by hydrodynamic simulations could be used by the community in the analysis of direct detection data.

Outline

- Dark matter direct detection
- Hints for a signal versus constraints
- DM distribution from hydrodynamic simulations
 - Identifying Milky Way analogues
 - Local DM density and velocity distribution
- Analysis of direct detection data
- Summary

Assuming the SHM:

• Comparing with simulated MW-like haloes (smallest ρ_{DM}):

• Comparing with simulated MW-like haloes (largest ρ_{DM}):

• Comparing with simulated MW-like haloes (largest ρ_{DM}):

• Halo-to-halo uncertainty larger than the 1σ uncertainty from each halo.

• Comparing with simulated MW-like haloes (largest ρ_{DM}):

- Halo-to-halo uncertainty larger than the 1σ uncertainty from each halo.
- Overall difference with SHM mainly due to the different local DM density of the simulated haloes.

Effect of the velocity distribution

 Haloes with velocity distributions closest and farthest from SHM Maxwellian:

Effect of the velocity distribution

 Haloes with velocity distributions closest and farthest from SHM Maxwellian:

Shift in the low WIMP mass region persists, where experiments probe the high velocity tail of the distribution.

Outline

- Dark matter direct detection
- Hints for a signal versus constraints
- DM distribution from hydrodynamic simulations
 - Identifying Milky Way analogues
 - Local DM density and velocity distribution
- Analysis of direct detection data

- We identified simulated haloes which satisfy observational properties of the Milky Way, besides the uncertain mass constraint. Haloes are MW-like if:
 - good fit to observed MW rotation curve.
 - stellar mass in the 3σ observed MW stellar mass range.

- We identified simulated haloes which satisfy observational properties of the Milky Way, besides the uncertain mass constraint. Haloes are MW-like if:
 - good fit to observed MW rotation curve.
 - stellar mass in the 3σ observed MW stellar mass range.
- ► The local DM density: $\rho_{DM} = 0.41 0.73 \text{ GeV cm}^{-3}$. \Rightarrow overall shift of the allowed regions and exclusion limits for all masses.

- We identified simulated haloes which satisfy observational properties of the Milky Way, besides the uncertain mass constraint. Haloes are MW-like if:
 - good fit to observed MW rotation curve.
 - stellar mass in the 3σ observed MW stellar mass range.
- ► The local DM density: $\rho_{DM} = 0.41 0.73 \text{ GeV cm}^{-3}$. \Rightarrow overall shift of the allowed regions and exclusion limits for all masses.
- ► Halo integrals of MW analogues match well those obtained from best fit Maxwellian velocity distribution (with mean speed 223 – 289 km/s). ⇒ shift of allowed regions and exclusion limits by a few GeV at low DM masses compared to SHM.

- We identified simulated haloes which satisfy observational properties of the Milky Way, besides the uncertain mass constraint. Haloes are MW-like if:
 - good fit to observed MW rotation curve.
 - stellar mass in the 3σ observed MW stellar mass range.
- ► The local DM density: $\rho_{DM} = 0.41 0.73 \text{ GeV cm}^{-3}$. \Rightarrow overall shift of the allowed regions and exclusion limits for all masses.
- ► Halo integrals of MW analogues match well those obtained from best fit Maxwellian velocity distribution (with mean speed 223 – 289 km/s). ⇒ shift of allowed regions and exclusion limits by a few GeV at low DM masses compared to SHM.
- Shift in the allowed regions and exclusion limits occurs in the same direction. ⇒ compatibility between different experiments is not improved.
Additional slides

Selection criteria

- ► M_{*} strongly correlated with v_c at 8 kpc, while the correlation of M₂₀₀ with v_c is weaker.
- $M_{\star}(R < 8 \text{ kpc}) = (0.5 0.9)M_{\star}$.
- $M_{\rm tot}(R < 8 \, \rm kpc) = (0.01 0.1) M_{200}.$
- Over the small halo mass range probed, little correlation between $M_{\rm DM}(R < 8 \ {\rm kpc})$ and M_{200} .

Velocity distribution azimuthal components

DM and stellar velocity distributions:

- Fit with a double Gaussian. Difference in the mean speed of second Gaussian between DM and stars is 35 km/s in the left, and 7 km/s in the right panel.
- Fraction of second Gaussian is 32% in the left panel and 43% in the right panel.