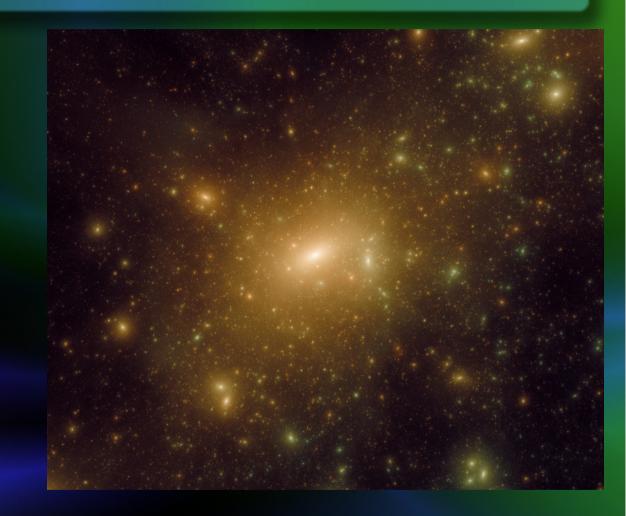
Structures of Dark Matter Halos and Their Impact on Detection **Experiments**

CHIBA UNIVERSITY 科研費

Tomoaki Ishiyama (Chiba University)

This work is supported by MEXT/JSPS KAKENHI for Scientific Research on Innovative Areas "Revealing the history of the universe with underground particle and nuclear research" (15H01030)


Structures of dark matter halos

Central Cusp

- Einasto profile
- NFW profile

$$\rho(r) = \frac{\rho_{\rm s}}{(r/r_{\rm s})[1 + (r/r_{\rm s})]^2}$$

- Myriad subhalo
 - dn/dm ~ m^{-(1.8-2)}
- Triaxial
- Non Universality
 - Weak dependence on the halo mass
 - halo to halo variation
 - halo formation epoch

Impact on the galaxy formation, Dark matter detection experiment

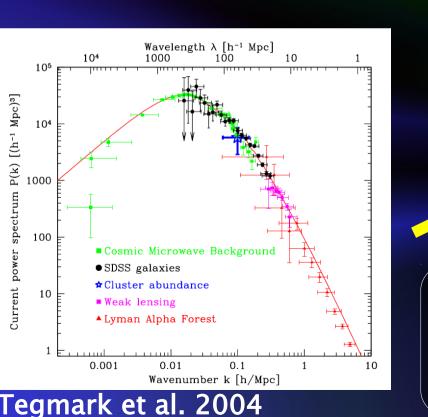
The structures of the Milky Way system

Dwarf Galaxy

- Numerous subhalos (10⁻⁶ ~ 10¹⁰ solar mass)
 - $dn/dm \propto m^{-2 \sim -1.8}$
- Where can we observe gamma-ray flux due to dark matter annihilation?
 - The center of the Milky Way halo?
 - Dwarf Galaxy ?
 - Microhalos near Sun ?

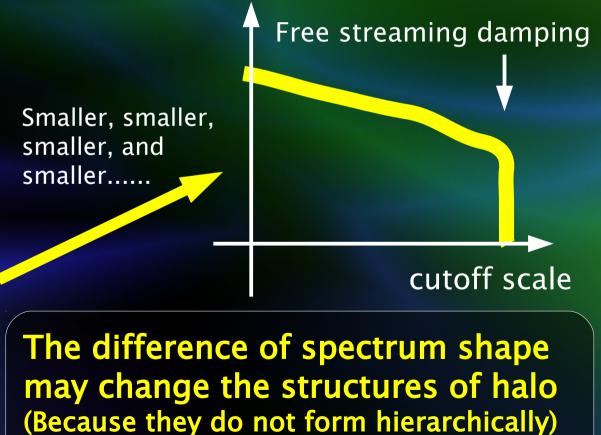
Flux $\propto \rho^2 \rightarrow$ Density structures of the halo & subhalos and spatial distribution of subhalos are very important

Solar system


very small subhalo

Milky Way

Sun


Free streaming damping

- Free streaming motions of dark matter particles wipe out the density fluctuation and impose a cutoff on P(k)
 - CDM: ~10⁻⁶ Msun (microhalo), if dark matter is the neutralino of 100GeV-1TeV (e.g. Zybin+1999, Hofmann+2001, Berezinsky+ 2003, , Green+2004)

WDM: 10⁶~10⁹ Msun

 \bullet

Aim

- Clarify the structure of halos near the free streaming scale by large cosmological N-body simulations
 - Typically, NFW or Einasto is assumed
 - Previous works focused on only the smallest microhalos and simulated only a few microhalos (Diemand+ 2005, Ishiyama+2010, Anderhalden & Diemand 2013)
 - Steeper cusps (-1.4~-1.5) are observed (Ishiyama+ 2010)
- 4096³ particles were used for the largest simulation
 - Impose the cutoff in the matter power spectrum
 - Focus on CDM, but should be applied for WDM etc
- Quantify shapes, concentrations and their distribution
- Evaluate the contribution to detection experiments

Cosmological N-body Simulations

Movie: **Takaaki Takeda** (4D2U, NAOJ VASA)

• z=400 to 32

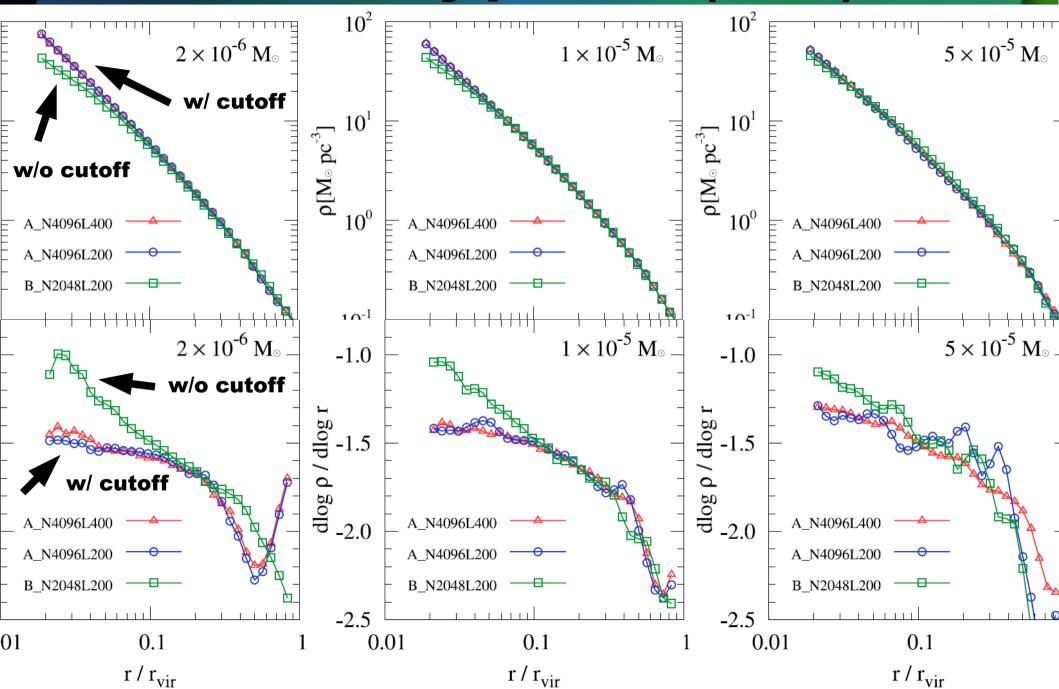
Name	N	L(pc)	$arepsilon(\mathrm{pc})$	$m(M_{\odot})$	$m_{\rm DM}~({\rm GeV})$
A_N4096L400	4096^{3}	400.0	2.0×10^{-4}	3.4×10^{-11}	100
A_N4096L200	4096^{3}	200.0	1.0×10^{-4}	4.3×10^{-12}	100
B_N2048L200	2048^{3}	200.0	2.0×10^{-4}	3.4×10^{-11}	w/o cutoff

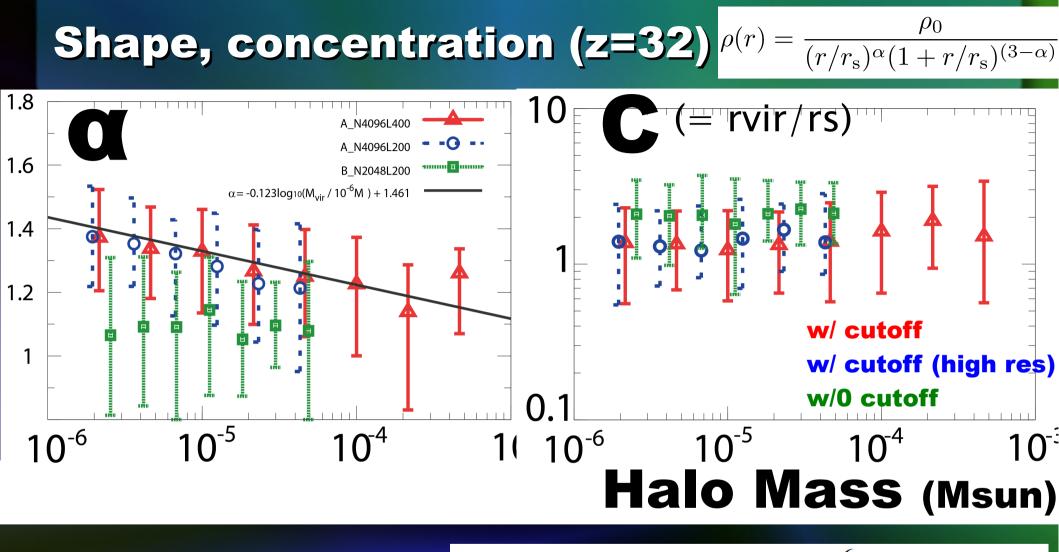
Facilities

- Massively parallel TreePM poisson solver, GreeM (Ishiyama+ 2009, 2012)
 - High performance and scalability upto a million CPU cores at least
 - SC12 Gordon Bell Prize Winner
 - 2-10 times faster than "Gadget-2" (Springel 2005)
 - ~5 times faster than HACC (Habib+ 2012)
- K Computer at RIKEN, Japan
 - World's fourth fastest supercomputer (10.6 Pflops)
 - Total 0.66 million cores
- Aterui supercomputer at CfCA, NAOJ
 - ~ 1 Pflops
 - Astro only

N = 4096³ = 68,719,476,736

L = 400 pc M = 3.4×10^{-11} Msun

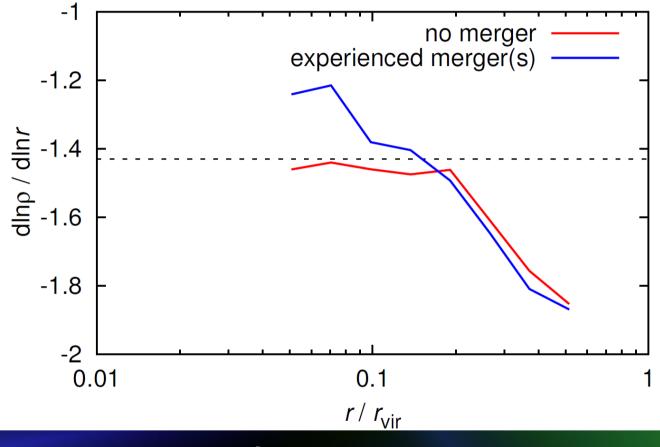

Analyze 10⁻⁶ ~ 10⁻⁴ Msun halos


#halos > 5000
Good statistics !!!

Sharp cosmic web is observed, compared to large scale structures

z=32

Stacked density profiles (z=32)

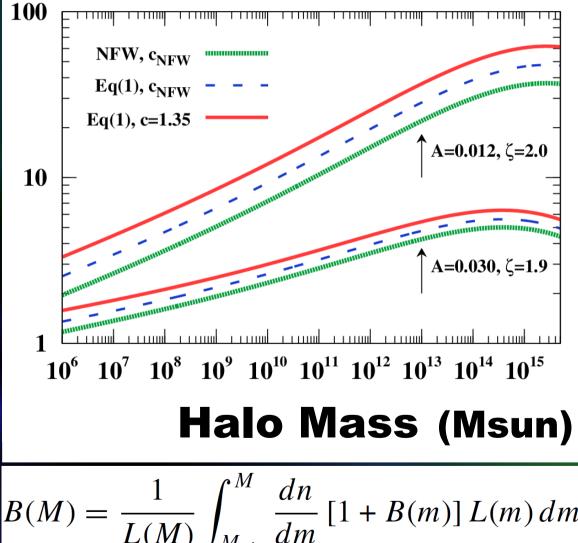


• Larger halo -> shallower cusp $\alpha = -0.123 \log(M_{\rm vir}/10^{-6} M_{\odot}) + 1.461$

- Reach NFW like profile at 10⁻³~10⁻² Msun !
- Concentration shows little dependence on the halo mass (c=1.2~1.7)
 - Because the formation epoch shows little dependence on the mass

Why cusp becomes shallower?

- Cusps are shallowing as the halos grow
- Major mergers of primordial halos are responsible for shallowing cusps
- Density profile is more susceptible to a merging process compared to that of galactic halos
- Controlled (not cosmological) merger simulations reproduce these resutls



Ogiya, Nagai, Ishiyama, arXiv: 1604.02866

Annihilation boost factor by subhalos

- Gamma-ray luminosity of a halo by neutralino self-annihilation seen from a distant observer
- NFW case (green)
- Based on this work
 (Red and blue)
- The steeper inner cusps of halos near the free streaming scale enhance the annihilation luminosity of a Milky Way sized halo between 12 to 67%
 - Strongly depending on the subhalo mass function

Boost factor

 $dn/dm = A/M(m/M)^{-\zeta}$

Structure of halos near the free streaming scale

- The central cusps of halos near the free streaming scale are much steeper than that of the NFW profile
 - Becomes gradually shallower as the halo mass increases.
 - NFW does not fit well, additional shape parameter is needed

$$\alpha = -0.123 \log(M_{\rm vir}/10^{-6} \, M_{\odot}) + 1.461$$

- Concentration shows little dependence on the halo mass
 - The median with the cutoff is $1.2 \sim 1.7$ at z=32
 - Exclude single power law mass-concentration relation
- Early merger phase play a important role to make the cusp shallower as the halo mass increases
- Steeper cusps enhance the annihilation luminosity of MW between 12~67%
- New simulations could make more robust predictions for direct/indirect detection experiments