The direct detection of dark matter

current status and future prospects

Andrew Brown, Nikhef, Netherlands abrown@nikhef.nl

Revealing the history of the universe with underground particle and nuclear research 11^{th} - 13^{th} of May, 2016

Elastic WIMP interactions

- Dark matter WIMPs could scatter of terrestrial atomic nuclei
 - Speeds of O(200 km/s), approximate rotation speed of sun in galaxy
 - Masses ~ $(10 10^4)$ GeV/c² recoil energies ~< 10 keVnr
- Interactions rare
 - Density ~ 0.3 GeV / cm^3 , about half a kg in the earth at any one time
 - cross-section very low $< 0.6 \times 10^{-45} \text{ cm}^2 @ \sim 30 \text{ GeV/c}^2$
 - Very low rates, less than 10s of events per tonne and year

Direct detection signatures

- Small nuclear recoils (~<10 keV)
 - Electronic recoil models also exist
- SI or SD interactions

- Exponential shape
- Modulates across year
- Directionality of signal
 - See N. Spooner talk!
 - See NEWAGE talk!

Direct DM, showing the results

- Cross-section translated to expected rate
 - (non) observation sets limit
- Mass vs. cross section limits on interaction strength
 - Strongly affected by target nuclear mass, threshold and exposure

Andrew Brown, University of Tokyo, 11^{th} - 13^{th} of $May,\,2016$

History of detection limits

• Factor 10 improvement every 2-3 years this century

Detector backgrounds

- Natural radioactive contaminants
 - Uranium and Thorium decay chains, potassium-40, Krypton-85...
 - Give gamma and beta decays, leading to electronic recoils
 - Can also cause (α, n) neutron production leading to nuclear recoils
- Cosmic rays
 - Muons can produce neutrons by interactions with detector surroundings
- All experiments attempt to reduce these backgrounds
 - Careful selection of detector materials for low-radioactivity
 - Online purification
 - Locating experiments deep underground

Detector locations

- All direct DM experiments located underground
 - Reduces cosmic ray muon flux
 - Usually > 2km water equivalent

- Three commonly used detection channels
 - Many detectors use a combination of two of these channels
- Bubble chambers offer a separate method

DAMA

- NaI scintillation detectors
- Annual modulation observed
 - 9.3σ significance in 2 6 keV range
 - Collected over 14 years

- Elastic SI DM ruled out by half a dozen experiments
- Many explanations offered, also ruled out
 - Leptophillic DM excluded by XENON100
- CsI expt (KIMS) has partially excluded DAMA
 - Further NaI expts (e.g. DM-ICE, KamLAND-Pico) to probe same region

CRESST-II

- Cryogenic scintillating CaWO₄ crystals
 - Measure light and phonon signals
 - Electronic and nuclear recoils cause different light/phonon ratios
 - Allows discrimination
 - Several 300g detectors held at mK temperatures
- Located in LNGS, Italy, first science data since 2007

CRESST-II

- In 2012 CRESST-II saw hints of a positive signal (brown region)
 In mild conflict with earlier run (pink)
- Later results (red dashed and red solid) have ruled out signal
- Capable of reaching an extremely low threshold (307eV)
 - Allows world's strongest SI elastic limits below $2 \text{ GeV}/c^2$

Andrew Brown, University of Tokyo, 11^{th} - 13^{th} of $May,\,2016$

SuperCDMS/CDMSLite

- Cryogenic germanium detectors
 - iZIP detector configuration, looking at phonon and ionization signals
- Capable of extremely low thresholds
 - CDMSLite 2015 56 eVee

SuperCDMS/CDMSLite

- Produced strongest limits in ~ 2 ~6 GeV/c² range
- SuperCDMS SNOLAB future expansion up to 400kg target
 - Focus on light WIMP searches $< 10 \text{ GeV}/c^2$

PICO-2L / PICO-60

- Bubble chamber experiment
 Listens to "sounds" of bubbles
- Threshold experiment
- Gamma/beta do not produce bubbles
- Produce very strong SD-Proton limits
 New clean run of PICO-60 in near term

Andrew Brown, University of Tokyo, 11^{th} - 13^{th} of May, 2016

Liquid noble gas detectors

- Currently the most promising technology at high mass
 - Frequently use liquid xenon or argon as a target
 - Many different experiments, dual phase and single phase
 - Large, scalable target masses

Single phase

- Detect prompt scintillation signal (S1) with very high efficiency
 - Position reconstruction on S1 allows surface event removal
 - Pulse shape discrimination possible for LAr
- Pursued in both LXe (e.g. XMASS) and LAr (e.g. DEAP 3600)

Dual phase

- Many DM detectors follow the "dual phase" noble gas TPC design
 Liquid as a target with gas used to generate secondary signal
- Most detectors aiming at masses (>50GeV/c²) are of this design
 DarkSide, LUX/LZ, XENON
- LUX most sensitive of all detectors
 - Subject of next talk!

Bottom PMT array

Andrew Brown, University of Tokyo, 11^{th} - 13^{th} of $May,\,2016$

• Interactions in TPC give two signals

Bottom PMT array

Interactions in TPC give two signals

 Prompt (S1)

Bottom PMT array

Andrew Brown, University of Tokyo, 11th - 13th of May, 2016

Interactions in TPC give two signals • • Prompt (S1) and Proportional (S2)

Cathode Bottom PMT array

• Interactions in TPC give two signals

 \circ Prompt (S1) and Proportional (S2)

Bottom PMT array

- Interactions in TPC give two signals

 Prompt (S1) and Proportional (S2)
- Allows position reconstruction
 - **S1-S2** time difference gives z depth
 - S2 hit pattern gives x-y position

XENON Project

2005-2007

Astropart.Phys.34:679-698, (2011)

2008-2016

Astropart.Phys.35:573-590, (2012)

XENON100

2015-2022

arXiv:1512.07501
XENON1T /
XENONNT

Xenon as a dark matter target

- Virtually no long-lived radio-isotopes in pure Xe
- SI and SD (from ¹²⁹Xe and ¹³¹Xe)
- Low threshold (few keVnr)
- Two-phase operation allows:

 3D position reconstruction, fiducialisation
 Background discrimination
- Relatively high density (~3g/cm³)
 High A (~131), with SI WIMP-nucleon σ ∝ A²
 - \circ Good self-shielding

XENON100

- Liquid xenon TPC
 - Fiducial mass 34kg 48kg
- Longest DM search run completed in 2012
 - World's strongest DM limits at the time
 - Further run unblinded, combined analysis ~done
- Longest continuous running of a LXe TPC
 - Over 1 year of data taking in 2011-2012 DM run
 - Recent calibration run longer, over 1.5 years
 - Now used for research and development

XENON100: 225 days SI results

Phys. Rev. Lett. 109, 181301 (2012)

XENON100 - exclusion of leptophilic DM

Science 2015 vol. 349 no. 6250 pp. 851-854

- Three representative models of leptophillic DM tested
 - ~halo-independent due to similar electronic structure between xenon and iodine
 - XENON100 well understood background lower than DAMA expectation
 - All exclude DAMA with significances > 3.60

XENON100 – Modulation search

- No globally significant modulation
 - Looking at periods up to 500 days
 - Local 2.80 significance at 1 year
 - Also seen in multiple-scatter control and high energy control, disfavouring DM interpretation
 - Best-fit, exclude DM halo phase at 2.5o
 - DAMA/LIBRA signal excluded at 4.8σ

XENON100 - ongoing analyses

- S2 only analysis soon to be published
- Since summer 2014, XENON100 has been used for Calibration / R&D
 - Now the longest stable running of a LXe TPC (>1.5 years)
- Several new calibration sources trialled
 - ⁸⁸Yttrium-Beryllium low energy 152 keV neutrons
 - ^{83m}Krypton low energy 9 keV and 32 keV gamma lines
 - ²²⁰Radon short lived isotope calibrating low energy electronic recoils (and more)
 - TCH₃, tritiated methane very low energy electronic recoil calibration

• Several 2016 papers expected on these novel calibrations!

Andrew Brown, University of Tokyo, 11^{th} - 13^{th} of $May,\,2016$

XENON1T

XENON1T - Systems

XENON1T - Overview

XENON100	XENON1T
161kg of Xe	3300kg of Xe
62kg active target	2000kg active target
Passive shields	Active shield (water)
30 cm drift	1m drift
5×10 ⁻³ events/keV/kg/day	< 2×10 ⁻⁴ events/keV/kg/day
1 ppt Kr/Xe	0.2 ppt Kr/Xe
65 μBq/kg for ²²² Rn	<10 µBq/kg for ²²² Rn
4.5 pe/keV @ 122 keVee	6.6 pe/keV @ 122 keVee

- Greatly increased size and purity over XENON100
 - Improved detector characteristics (e.g. light yield)

XENON1T - Backgrounds

- Total ER events expected: 720 events / year in 1t FV
 - Dominant source (620 ev/yr) is 220-Rn chain, conservative $10\mu Bq/kg$
- Total NR events expected: 0.62 events / year in 1t FV
 - Mostly from radiogenic neutrons (0.6 ev/year)
 - Steep shape of CNNS at low E means S1/S2 conversion v. important!

XENON1T - Sensitivity

- XENON1T expected 100× improvement over XENON100
 - Greater than an order of magnitude over existing best limit (LUX)
 - Expected to reach LUX sensitivity within ~10 live-days of data taking

XENON1T – Status highlights

- Water tank muon veto
 - Installed \checkmark
 - Water filling test ✓
 - Muon veto tested \checkmark
- Cryostat / TPC
 - Installed \checkmark
 - Cooled down ✓
 - Filled with liquid xenon \checkmark
- High voltage / PMTs
 - Installed \checkmark
 - PMTs tested working (all 254) \checkmark
 - HV testing (underway)
- Current work to get first S1 / S2 signals out of TPC!

XENONnT – the XENON1T upgrade

- Increase xenon target, plan to allow 20 tonne-years of exposure
- Reuse existing outer cryostat, water tank, cooling system...
- Allows improvement by nearly order of magnitude in a few live-years

The dark matter picture

- Progress continues rapidly
- Ultimately restricted by the neutrino CNNS floor

Going forward

- Many successful experiments in the field
 - All have prospects to improve their sensitivity
- *Non-exhaustive* list
 - XENON1T fully funded, being commissioned now
 - DarkSide-50 continuing with extended underground argon run
 - SuperCDMS funded by DOE in G2, design/production for SNOLAB
 - DEAP-3600 built and cooled down, see J. Monroe talk!
 - XMASS new run, next step XMASS 1.5 see K. Ichimura talk!
 - LUX/LZ new LUX run, full DOE funding for LZ, see A. Bernstein talk!
- Ultimately limited by CNNS neutrino floor
 - Irreducible neutrino background limits DM detector future
 - Estimated to be some time by mid 2020s for non-directional detectors
 - Beaten by directional detectors, see N. Spooner and K. Miuchi (NEWAGE) talks!

Summary

- The terrestrial search for dark matter interactions continues
 - A wide range of technologies has been tested over the last decade(s)
- In the next O(5) years
 - Different technologies will probe different mass ranges
 - Searches at masses >10 GeV/ c^2 likely dominated by noble gas detectors
 - At lighter masses, variety of technologies and targets
- Several experiments are under design, building and operation
 - Still real competition in the field, expected to continue for years to come
 - Shows that funding agencies are still supportive!