Recent results from XMASS

K. Ichimura Kamioka observatory, ICRR, the University of Tokyo Kavli IPMU for the XMASS collaboration

Revealing the history of the universe with underground particle and nuclear research, May 11-13, 2016

Contents

- · XMASS experiment
- Recent results from XMASS
 - direct dark matter search by annual modulation
 - two neutrino double electron capture on ¹²⁴Xe
- Toward next phase : XMASS-1.5

The XMASS experiment

★ Multi purpose low-background experiment with LXe

- Xenon MASSive detector for solar neutrino (pp/⁷Be neutrino)
- Xenon neutrino MASS detector ($\beta \beta$ decay)
- Xenon detector for Weakly Interacting MASSive Particles (DM)

solar neutrino

Ονββ

Dark Matter

The XMASS collaboration:

Kamioka Observatory, ICRR, the University of Tokyo:	Yokohama National University:
K. Abe, K. Hiraide, K. Ichimura, Y. Kishimoto, K. Kobayashi,	S. Nakamura
M. Kobayashi, S. Moriyama, M. Nakahata, T. Norita, H.	Miyagi University of Education:
Ogawa, H. Sekiya, S. Tasaka	Y. Fukuda
O. Takachio, A. Takeda, M. Yamashita, B. Yang	ISEE, Nagoya University:
Kavli IPMU, the University of Tokyo:	Y. Itow, R. Kegasa, K. Kobayashi, K. Masuda, H. Takiya
K.Martens, Y. Suzuki, X. Benda	IBS:
Kobe University:	N. Y. Kim, Y. D. Kim
R. Fujita, K. Hosokawa, K. Miuchi, Y. Ohnishi, N. Oka, Y.	KRISS:
Takeuchi	Y. H. Kim, M. K. Lee, K. B. Lee, J. S. Lee
Tokai University:	Tokushima University:
K. Nishijima	K.Fushimi

10 institutes ~40 researchers.

The XMASS experiment

XMASS-I Current phase

XMASS 1.5 next phase

1~3 ton (FV)/ 6 ton

 $1.5 \text{m}\phi$

DM search

 $\sigma_{\rm SI} < 10^{-46} \, \rm cm^2$

pp solar neutrinos

~a few events/day

XMASS-II

TILITY

- · Phasing Approach
- · XMASS-I aims at the search for dark matter

>10 ton (FV)/ 24 ton

Multi purpose : DM search $\sigma_{SI} < 10^{-48} \text{ cm}^2$ pp-solar neutrinos: 10 cpd double-beta decay of ¹³⁶Xe

Detector and its characteristic(1)

- Located in the Kamioka mine in Japan (~2700 m.w.e.)
- Single phase liquid xenon detector with 832 kg LXe sensitive volume.
 - its scalability for further detector upgrade
- 642 low background 2inch PMTs : 62% photo-cathodes coverage
- High light Yield (~15 p.e. / keV) and Low energy threshold
 - Achieved 0.3 keV in XMASS-I (full volume)
 - 2 keV for fiducial volume analysis
- High sensitivity for e/γ events as well as nuclear recoil
 - Able to detect Axion Like Particles (ALP), hidden photon, inelastic scattering and so on, as well as "Standard" WIMPs

PMT R10789

Detector and its characteristic(2)

Background rate in the fiducial volume before separation of nuclear recoils from e/ γ

Lowest BG rate at a few 10's keV

XMASS achieved O(10⁻⁴) events/ day/kg/keV_{ee} at a few 10's keV

Sensitive to WIMP inelastic scattering, bosonic super-WIMPs, 2ν double electron capture etc.

Even modest background at low
energy, XMASS has good sensitivity
with a large mass and low energy
threshold.

Added to D.C.Malling thesis (2014) Fig.1.5

- PMT AI seal were covered by copper ring and plate to reduce BG as detector refurbishment
- After refurbishment, event ~5 keV is reduced to ~1/10.
- Now, the 3rd year continuity operation is ongoing.
 - The longest running time among LXe detectors!

Direct dark matter search by annual modulation in XMASS-I

annual modulation

- Event rate of dark matter signal is expected to modulate annually due to relative motion of the Earth around the Sun
- Annual modulation claimed by DAMA/LIBRA
 - · Total exposure : 1.33 ton · year, 14 cycles.
 - \cdot 9.3 σ significance
 - Modulation amplitude : (0.0112±0.0012) cpd/kg/keV for 2-6 keV
 - No particle ID (including electron signals)
- XMASS-I annual modulation analysis
 - 1 year exposure (= 0.83 ton \cdot year) is comparable exposure time.
 - Low analysis threshold (1.1 keVee) without particle ID

R. Bernabei et al., Eur. Phys. J. C (2013) 73:2648

Stability Check by Detector calibration

Stepping

Moter

- Inner Calibration sources : ⁵⁵Fe, ¹⁰⁹Cd, ²⁴¹Am, ⁵⁷Co and ¹³⁷Cs
- The scintillation light yield response was traced by ⁵⁷Co 122 keV calibration data taken every (bi-)week, from Z=-40cm to +40cm
- Intrinsic light yield of the liquid xenon scintillator, absorption and scattering length for the scintillation light extracted from the data/MC comparison

Stability Check by Detector calibration

- From the ⁵⁷Co calibration data, We observed p.e. yield changes :
- 1) sudden drop at the power failure
- 2)It recovered after purification work in gas phase
- 3)we continuously circulate the gas purification
- We can trace observed p.e. yield change as a changes the absorption length.
- Absorption length change : 4m ~ 11m
- Scattering length : remains stable at 52cm
- Relative intrinsic light yield : stayed within ±0.6%
- Uncertainties due to this instability is taken into account.

Data set & event selection

1.ID trigger event (≥4 hit), no outer detector hits.

2.Veto 10ms after the events

3.RMS of time hits < 100 ns

4.Remove Cherenkov events (orig. in glass)

remove events which have num. of hits in earlier
 20ns > 60% of total hits.

5.Remove events in front of PMT

remove events which have higher maxPE/totalPE ratio

Modulation analysis method

- The data set was divided into 40 time-bin (roughly 10 days livetime each)
- The data in each time-bins were further divided into energy-bin (bin width = 0.5 keV_{ee})
- Two fitting methods were performed. Both of them fit all energy/time bins simultaneously
- Systematic error due to time dependence of light yield was treated by following two method as a relative efficiency difference

7 GeV WIMPs w/ 2 x 10⁻⁴⁰ cm² 8 GeV WIMPs w/ 2 x 10⁻⁴⁰ cm²

Method 1 : pull term

$$\chi^2 = \sum_{i}^{E_{bins}} \sum_{j}^{t_{bins}} \left(\frac{(R_{i,j}^{\text{data}} - R_{i,j}^{\text{ex}} - \alpha K_{i,j})^2}{\sigma(\text{stat})_{i,j}^2 + \sigma(\text{sys})_{i,j}^2} \right) + \alpha^2,$$

R^{data}: observed data,R^{ex}: expected rate σ (stat) : statistical error, σ (sys) : systematic error K_{ij} : 1 σ correlated syst. error on the expected event rate based on the relative cut effciency

Method 2 : covariance matrix

$$\chi^{2} = \sum_{k,l}^{N_{\text{bins}}} (R_{k}^{\text{data}} - R_{k}^{\text{ex}}) (V_{\text{stat}} + V_{\text{sys}})_{kl}^{-1} (R_{l}^{\text{data}} - R_{l}^{\text{ex}}),$$

R^{data}: observed data, R^{ex}: expected rate, Nbins: Ebins x tbins

WIMP case

time variation data was fitted by:

$$R_{i,j}^{\text{ex}} = \int_{t_j - \frac{1}{2}\Delta t_j}^{t_j + \frac{1}{2}\Delta t_j} \left(C_i + \sigma_{\chi n} \cdot A_i(m_{\chi}) \cos 2\pi \frac{(t - t_0)}{T} \right) dt,$$

WIMP case :

- Modulation amplitude becomes a function of the WIMP mass
- 2D fitting (time and energy bin),
 Fitted in 1.1-15 keV_{ee} energy
 range
- No significant signal, derived < 4.3x10⁻⁴¹ cm² at 8 GeV (90% C.L.)
- DAMA/LIBRA region is mostly excluded by annual modulation search

V₀ : 220 km/s V_{esc} : 650 km/s $\rho_{dm} = 0.3 \text{ GeV/cm3}$ V_{esc} : 544 km/s gives < 5.4x10⁻⁴¹ cm² A_i : Amplitude C_i : Constant σ_{χ} : WIMP-nucleus cross section m_{\chi}: WIMP mass t₀ : 152.5 day T : 1 year

Model independent case

time variation data was fitted by:

$$R_{i,j}^{\text{ex}} = \int_{t_j - \frac{1}{2}\Delta t_j}^{t_j + \frac{1}{2}\Delta t_j} \left(C_i + A_i \cos 2\pi \frac{(t - t_0)}{T} \right) dt$$

- A_i : Amplitude(free)
- C_i: Constant (free) t₀: 152.5 day
- T:1 year
- Independent of any specific dark matter model
 - 1.1-7.6 keV_{ee} energy range was used for fitting procedure
- Significance was evaluated with test statistic (10,000 samples) and no significant modulated signal has been observed. (p-value = $0.014 (2.5 \sigma)$, $0.068(1.8 \sigma)$ for 2 fitting method)

(1.7 - 3.7) x 10⁻³ counts/day/kg/keV_{ee} in 2-6 keV_{ee} (0.5 keV_{ee} bin width, 90% C.L. Bayesian)

- 0.02 counts/day/kg/keVee by DAMA/ LIBRA, closed to XENON100 sensitivity
- More stringent constraint
- Another one year cycle data with more stable data has been taken.

Search for two-neutrino double electron capture on ¹²⁴Xe with the XMASS-I detector

- Two orbital electrons are captured simultaneously
- 2ν mode : allowed in the standard model, but there exists only a few experimental result :
- · $^{130}Ba : T_{1/2} = (2.2 \pm 0.5) \times 10^{21}$ years
- · 78 Kr : T_{1/2} = (9.2^{+5/5}-2.6(stat)±1.3(sys))x10²¹ years
- Any measurement of 2ν mode will provide a new reference for the calculation of nuclear matrix elements from the proton-rich side of the mass parabola of even-even isobars
- 0ν mode : lepton number violating process as well as $0\nu\beta\beta$ decay

124,126 Xe 2ν double electron capture

- ¹²⁴Xe 2 ν double electron capture (2 ν ECEC) :
- $\frac{124}{\text{Xe}}$ (g.s., 0+) + 2e⁻ $\rightarrow \frac{124}{\text{Te}}$ (g.s., 0+) + 2 ν_{e} + 2864 keV
- In case that 2 K-shell electron capture, signal is total energy deposition of 63.6 keV from atomic X-rays and Auger electrons.
- Theoretical prediction of $T_{1/2}^{2\nu 2K}$ (124Xe) : 10²⁰ ~ 10²⁴ year
- experimental results : $T_{1/2}^{2\nu 2K}(124 \text{Xe}) > 2.0 \times 10^{21}$ years (90% C.L.), w/ proportional counter

¹²⁶Xe can also undergo 2ν ECEC, but this reaction is much slower (Q_{ECEC} = 896 keV)

20

124,126 Xe 2ν double electron capture

Signal MC :

- \cdot X-rays and Auger electrons after 2 ν 2K capture are simulated
- The energy window (56-72 keV) is determined so that it contains 90% of the simulated signal
- \cdot Signal Detection efficiency = 59.7%

Data set : 165.9 days LiveTime commissioning run data, R \leq 15cm fiducial volume (41kg natural Xe, 39g ¹²⁴Xe, 36g of ¹²⁶Xe)

5 events are left in the signal region after all cuts

(1)Pre-Selection+ 15cm radius cut
(2) (1)+ Timing cut
(3) (2)+ Band-like pattern cut

(1)Pre-Selection+ 15cm radius cut
(2) (1)+ Timing cut
(3) (2)+ Band-like pattern cut

Expected signal with $T_{1/2}(2\nu 2K) = 4.7 \times 10^{21}$ yr. Expected ²¹⁴Pb background

124,126 Xe 2ν double electron capture

Dark Matter Search

- The main contribution to the remaining BG is the ²¹⁴Pb (²²²Rn : 8.2±0.5 mBq/det.)
 - Expected ²¹⁴Pb BG is 5.3±0.5 events, no significant excess above BG was observed
- We set the world best limit on the half life :
 - $T_{1/2}^{2\nu 2K}$ (124Xe) > 4.7x10²¹ years (90% C.L.)
 - $T_{1/2}^{2\nu 2K}$ (126Xe) > 4.3x10²¹ years (90% C.L.)

Excess in the highest bin : due to γ ray from ^{131m}Xe (163.9 keV)

(1)Pre-Selection+ 15cm radius cut
(2) (1)+ Timing cut
(3) (2)+ Band-like pattern cut

Expected signal with $T_{1/2}(2\nu 2K) = 4.7 \times 10^{21}$ yr. Expected ²¹⁴Pb background

Future of XMASS, Toward next phase : XMASS-1.5

Toward XMASS1.5 and II XMASS-I

Current phase

XMASS 1.5 next phase

TITIT

100kg (FV)/832 kg 80cm*ø*

DM search

 $1 \sim 3 \text{ ton (FV)} / 6 \text{ ton}$ $1.5 \text{m} \phi$

DM search σ_{SI} < 10⁻⁴⁶ cm² pp solar neutrinos ⊷a few events/day• >10 ton (FV)/ 24 ton

Multi purpose : DM search σ_{SI} < 10⁻⁴⁸ cm² pp-solar neutrinos: 10 cpd double-beta decay of ¹³⁶Xe

✓ To improve the sensitivity,

- increase the fiducial volume
- discriminate against BG events, especially surface BG
- select ultra low BG detector material

are needed

surface BG identification

Scintillation Photons

Quartz Photo cathode

XMASS-I flat PMTs high probability to miss detecting the photons from the near surface →leads to miss reconstruction

flat window 2-inch PMT R10789

XMASS 1.5 dome shape PMTs can detect photons from near surface →hit pattern info. can reject surface BGs.

Dome shape window 3-inch PMT R13111 Large detection efficiency for nearby events.

surface BG identification

Scintillation Photons

Quartz Photo cathode

XMASS-I flat PMTs high probability to miss detecting the photons from the near surface →leads to miss reconstruction

XMASS 1.5 dome shape PMTs can detect photons from near surface →hit pattern info. can reject surface BGs.

Neighbor 3 PMTs detects ~50% photon from surface BG

surface BG identification

- BG rejection ~ 10^{-5} while keeping 20% signal efficiency
- Even for the same BG level as in the XMASS-I detector, we can achieve 10⁻⁵ counts/ day/keV/kg level
- Further material screening and improvement of the analysis will achieve much lower BG level.
- Reduction of surface BG may leads to increase fiducial mass from 1 ton to ~ 3 ton

Dark Matter Search

Other feature of R13111

Material screening

- Target RI level : 0.1 mBq/PMT for U/Th chain
- No dirty AI is used for seal (> 3 order magnitude lower U)
- · Kovar (large ⁶⁰Co RI) metal is replaced to Co free metal
- Parts-by-parts RI measurement using HPGe, Alpha counter, ICPMS/GDMS
- High and uniform collection efficiency for whole area (side part of dome shape).
 - \cdot > 80% collection eff. Q.E. ~ 30%
- TTS : shorter TTSand high timing resolution (TTS ~5.6ns \rightarrow 2.9ns)
 - improve the reduction power of Cherenkov events
- Shorter total length : 101.5mm \rightarrow 87.5mm
 - Thinner PMT holder gives reducing the holder weight, can enlarge sensitive LXe region.
- Not only Surface/PMT BG reduction, but also inner detector RI reduction
 - ⁸⁵Kr : distillation
 - ²²²Rn : material screening such as cables (Rn emanation measurement using Rn detector),

Expected Sensitivity

XMASS1.5 : 1~3 ton fiducial / Total ~6 ton

- Target sensitivity : < 10⁻⁴⁶ cm² for 100 GeV WIMPs
- ~1x10⁻⁵ counts/keV/kg/day
- Target : Both nuclear recoil and electron recoil processes (ex. ALPs)

Summary

- Recent Results from XMASS-I are shown.
 - · Annual modulation
 - WIMP : < 4.3x10⁻⁴¹ cm² at 8 GeV, DAMA/LIBRA region is mostly excluded by annual modulation search
 - Model Independent Analysis : upper limit amplitude < (1.7-3.7)x10⁻³ counts/kg/day/keV_{ee}, more stringent constraint
 - · Search for 2ν double electron capture
 - We set the world best limit on the half life :
 - · $T_{1/2}^{2\nu 2K}$ (124Xe) > 4.7x10²¹ years (90% C.L.)
 - · $T_{1/2}^{2\nu 2K}$ (126Xe) > 4.3x10²¹ years (90% C.L.)
- Next step : XMASS1.5
 - Use dome shape PMTs to identify surface BG effectively
 - \cdot with further reduction of BG (Material screening, distillation etc.)
 - Reach < 10⁻⁴⁶ cm² for SI interaction of WIMPs with 1x10⁻⁵ counts/day/ kg/keV_{ee} BG rate