International Symposium on Revealing the History of the Universe with Underground Particle and Nuclear Research 2016 University of Tokyo

hotel

Neutrinos from Supernovcie

Basudeb Dasgupia TIFR, Mumbai

Sanduleak –69 202

Supernova 1987A 23 February 1987

29 MEARS AGO

IN CALAXY NEAR US

Kungliga Svenska Vetenskapsakademien harden 8 oktober 2002 beslutat att med det NOBELPRIS som detta år tillerkännes den som inom fysikens område gjort den viktigasteupptäckten eller uppfinningen_ med ena hälften gemensamt belöna Masatoshi Koshiba an Raymond Davis Tr. för banbrytände insatser inom astrofysiken, särskilt för detektion av kosmiska neutriner

STOCKHOLM DEN 10 DECEMBER 2002_____

Jennie Catorn (

50

So why are we still talking about Supernova Neutrinos?

Opportunities & Challenges

Burst	Accretion	Cooling
SN standard candle?	Astrophysics	Nuclear physics
SN theory	Oscillation effects?	Nucleosynthesis
Timing	Shock revival?	Exotics/Axions
Mass hierarchy	Mass hierarchy?	

9:40	30'	Supernova neutrinos and Supernova Relic Neutrinos using a Water Cherenkov Detector	M. Nakahata (ICRR, Tokyo)
10:10	20'	coffee	
) cł	nair:M	Wurm (Mainz)	
10:30	40'	Recent progress in supernova progenitor theories	H. Umeda (Tokyo)
11:10	30'	Theoretical study of supernova relic neutrinos	K. Nakazato (Kyushu)
11:40	100'	lunch	
) cł	nair:B.	Dasgupta (Tata)	
13:20	30'	Supernova as sources of multi-messenger signals	Ko Nakamura (Waseda)
13:50	20'	The final evolution of massive stars observed by pre supernova neutrinos	T. Yoshida(University of Tokyo)
14:10	20'	Properties of pre-supernova neutrino in collapsing phase ~ towards comprehensive neutrino studies	C. Kato(Waseda university)
14:30	20'	coffee	
) cł	nair: N	I.Sakuda	
14:50	40'	Prospects for detecting the Diffuse Supernova Neutrino Background in JUNO	M. Wurm (Mainz)
15:30	30'	Recent Progress on Hyper-Kamiokande Project	T. Sekiguchi (KEK)

Supernova Theory

Neutrino Mechanism

Basudeb Dasgupta, TIFR Mumbai

Delayed Explosion

Basudeb Dasgupta, TIFR Mumbai

First 3D Explosions (9.6 M_{\odot})

Garching group

Failed SN

Outcome of Core Collapse (neglecting fallback, moderately-stiff EOS)

Fluxes and Spectra

Also, pre-supernova fluxes (Odrywolzcek et al. See talks by Kato, Yoshida) See also Kato, Azari, Yamada, Takahashi, Umeda, Yoshida, Ishidoshiro

Basudeb Dasgupta, TIFR Mumbai

STANDING ACCRETION SHOCK INSTABILITY

Garching group

Basudeb Dasgupta, TIFR Mumbai

LEPTON-# EMISSION SELF-SUSTAINED ASYMMETRY

Tamborra, Hanke, Janka, Mueller, Raffelt, Marek

Basudeb Dasgupta, TIFR Mumbai

Still a long way to go

Solution approach

- **3D** hydro + **6D** direct discretization of Boltzmann Eq. (code development by Sumiyoshi & Yamada '12)
- **3D** hydro + two-moment closure of Boltzmann Eq. (next feasible step to full 3D; O. Just et al. 2013)
- **3D** hydro + "**ray-by-ray-plus**" variable Eddington factor method (method used at MPA/Garching)
- **2D** hydro + "**ray-by-ray-plus**" variable Eddington factor method (method used at MPA/Garching)

Required resources

- \geq 10–100 PFlops/s (sustained!)
- \geq 1–10 Pflops/s, TBytes
- $\geq 0.1-1$ PFlops/s, Tbytes
- $\geq 0.1-1$ Tflops/s, < 1 TByte

Janka (TAUP 2013)

Basudeb Dasgupta, TIFR Mumbai

Simplified Set-up

Supernova

Formal Aspects

$$i D\hat{f} - \left[\hat{\mathcal{H}}, \hat{f}
ight] - \hat{U}\left[\hat{\phi}
ight]$$

OSCILLATIONS + COLLISIONS

Vlasenko, Fuller, Cirigliano

BEYOND MEAN-FIELD

Vaananen, Volpe, Espinoza Serrau and Volpe Kartavtsev, Raffelt and Vogel Balantekin, Pehlivan,..

TYPICALLY SMALL EFFECTS, BUT ····

Oscillation Framework

Nonlinear nu-nu effects are important when nu-nu interaction frequency exceeds the typical vacuum oscillation frequency

These interactions give rise to "Collective" flavor conversions

MSW Effects

Neutrino-Neutrino Interactions

The density matrix has large dimensionality

Basudeb Dasgupta, TIFR Mumbai

Collective Effects

Duan, Fuller, Carlson, Qian (2005, 2006,...)

Basudeb Dasgupta, TIFR Mumbai

Nontrivial Evolution only for Inverted Hierarchy

Fogli, Lisi, Marrone and Mirizzi

Basudeb Dasgupta, TIFR Mumbai

Why do we get these effects?

Dasgupta, Dighe, Raffelt and Smirnov

Basudeb Dasgupta, TIFR Mumbai

Multi-Angle Effects

Esteban-Pretel et al, Friedland and Duan

Basudeb Dasgupta, TIFR Mumbai

Multi-Angle Matter Effect

Esteban-Pretel, Mirizzi, Pastor, Tomas, Raffelt, Serpico, Sigl

Basudeb Dasgupta, TIFR Mumbai

Linear Stability Analysis

$$i\partial_r S_{\omega,u} = [\omega + u(\lambda + \epsilon \mu)]S_{\omega,u}$$
$$- \mu \int du' d\omega' (u + u')g_{\omega'u'}S_{\omega',u'}.$$

EIGENVALUE PROBLEM

Banerjee, Dighe, Raffelt

Basudeb Dasgupta, TIFR Mumbai

Angular Symmetry Breaking

Raffelt, Sarikas, Seixas

Instability from Inhomogeneity

Mirizzi, Mangano, Saviano Duan and Shalgar

Instability Footprint

Temporal Instability

Dasgupta and Mirizzi Capozzi, Dasgupta, Mirizzi

Moving Footprints

Distance from the center of SN

Fast Conversions

Possibility of even faster flavor conversions, that scale as neutrino density, independent of vacuum oscillation frequency! Sawyer

Basudeb Dasgupta, TIFR Mumbai

Work in progress

Main Channels

• SK-like water Cherenkov detector (30 kt, SN at 10kpc)

$$ar{
u}_e p
ightarrow ne^+$$
: $pprox$ 7000 - 12000*
 $u e^-
ightarrow
u e^-$: $pprox$ 200 - 300*
 $u_e + {}^{16} O
ightarrow X + e^-$: $pprox$ 150-800*

SK and IC are the SN neutrino workhorses.

• Scintillation detector

$$ar{
u}_{e} p
ightarrow ne^{+}$$

 $u + {}^{12}C
ightarrow
u + X + \gamma (15.11 \text{ MeV})$

• Liquid Argon detector

$$u_{e} + {}^{40}\text{Ar}
ightarrow {}^{40}\text{K}^{*} + e^{-}$$

Low threshold. May see non-electron.

Liquid Argon TPC can see neutrinos, others mostly see antineutrinos

Electron Neutrinos in SK

Laha and Beacom

Basudeb Dasgupta, TIFR Mumbai

Non-electron Neutrinos

Beacom, Farr, Vogel Dasgupta and Beacom

Pointing and Alerts

Neutrinos reach ~24 hours before the light from SN explosion

SN at 10 kpc may be detected within a cone of ~ 5° at SK, factor of 3 better with Gd

Beacom and Vogel Tomas, Semikoz, Kachelriess, Raffelt and Dighe

This may be crucial for dust-obscured supernovae!

Coincidence at multiple detectors will trigger an alert for astronomers

SNEWS http://snews.bnl.gov

 $ve \rightarrow ve$

⊽_p → ne

Basudeb Dasgupta, TIFR Mumbai

Timing

SN neutrino-curve is an excellent probe of the bounce time. This can be used to great advantage for coincidence measurement with gravitational wave detectors

Pagliaroni, Vissani, Coccia and Fulgione Halzen and Raffelt

Basudeb Dasgupta, TIFR Mumbai

Lund Marek Lunardini Janka Raffelt Tamborra, Hanke, Mueller, Janka, Raffelt

Earth Matter Effects

HE 5.1-4

Electron flavor flux = $\cos^2 \theta_{12} v_1 + \sin^2 \theta_{12} v_2$

MSIJJ REGENERATION OF SOLAR AND SUPERNOUA V IN THE EARTH M. Cribier⁽¹⁾, W. Hampel⁽²⁾, P.O. Lagage⁽¹⁾, J. Rich⁽¹⁾, M. Spiro⁽¹⁾, D. Vignaud⁽¹⁾ ⁽¹⁾ CEN Saclay F; ⁽²⁾ Max Planck Institut fur Kernphysik, Heidelberg, FRG Abstract We discuss the MSW (Mikheyev-Smirnov-Wolfenstein) effect for different radiochemical and real-time neutrino experiments taking into account the effects of the passage through the earth for solar and supernova neutrinos . We emphasize that v_e regeneration in the earth can lead to measurable increases in counting rates and to a time dependent v_e energy spectrum. Such observations would verify the presence of the MSW effect and lead to a restriction on the allowed

Detector Location Matters!

values of neutrino mass differences and mixing angles.

Electron flavor: = $(1-P_{2e})v_1 + P_{2e}v_2$ P_{2e} is the probability of v_2 to v_e which depends on Earth density and L

Earth Matter Effects

Hard to do...

Boriello, Chakraborty, Mirizzi, Serpico, Tamborra

Basudeb Dasgupta, TIFR Mumbai

Mass Hierarchy via Risetime

Serpico, Chakraborty, Fischer, Hudepohl, Janka, Mirizzi

Basudeb Dasgupta, TIFR Mumbai

Look for new physics...

QCD phase transition Sterile Neutrinos orrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and 80 en insert it agair 80 Normal hierarchy 70 Other oscillation scenarios Neutrino event rate [per 5 ms] 0 0 0 0 0 0 0 0 0 0 60 50 40 30 20 10 n 0.255 0.26 0.265 0<u>*</u> 0.1 0.2 0.3 0.5 0.4 Time after bounce [s]

Dasgupta, Horiuchi, Mirizzi + Basel Group

Arguelles, Brdar, Kopp

Opportunities & Challenges

Burst	Accretion	Cooling
SN standard candle?	Astrophysics	Nuclear physics
SN theory	Oscillation effects?	Nucleosynthesis
Timing	Shock revival?	Exotics/Axions
Mass hierarchy	Mass hierarchy?	