Theoretical study of supernova relic neutrinos

Ken'ichiro Nakazato (Kyushu University)

Revealing the history of the universe with underground particle and nuclear research 2016, May 13, 2016

<u>Outline</u>

- 1. Introduction
- 2. What does SRN spectrum depend on?

involving metallicity evolution of galaxies (K. Nakazato et al. 2015, ApJ 804, 75)

- 3. Comparison with noise BG
- 4. Summary

1. Introduction

2. What does SRN spectrum depend on?

involving metallicity evolution of galaxies (K. Nakazato et al. 2015, ApJ 804, 75)

- 3. Comparison with noise BG
- 4. Summary

- expanding!
- Cosmological redshift z denotes ``time''.

Many generations of stars have exploded!

Supernova neutrinos

• Clue for puzzle in supernova physics.

Light curves and spectra

• Neutrino emission continues for 10 seconds.

Supernova relic neutrinos

- The flux of neutrinos and antineutrinos emitted by all corecollapse supernovae in the causallyreachable universe.
- Is it possible to study something from supernova relic neutrinos?

Detection status

• The upper limit is near theoretical predictions.

<u>Outline</u>

1. Introduction

2. What does SRN spectrum depend on?

involving metallicity evolution of galaxies (K. Nakazato et al. 2015, ApJ 804, 75)

3. Comparison with noise BG

4. Summary

What determines BG luminosity? ↓ supernova relic neutrinos

- luminosity of a source \rightarrow supernova physics
- the source number
- distance to sources

star formation history

- cosmological redshift for the expanding universe
- Also neutrino oscillation parameters

$$\frac{Formulation}{dE_{\nu}} = c \int_{0}^{z_{\max}} \frac{dz}{H_{0}\sqrt{\Omega_{m}(1+z)^{3} + \Omega_{N}}} \times \left[R_{CC}(z) \int_{0}^{Z_{\max}} \psi_{ZF}(z,Z) \left\{ \int_{M_{\min}}^{M_{\max}} \psi_{IMF}(M) \frac{dN(M,Z,E_{\nu}')}{dE_{\nu}'} dM \right\} dZ \right]$$

- Supernova neutrino spectrum: $\frac{\mathrm{d}N(M, Z, E'_{\nu})}{\mathrm{d}E'_{\nu}}$
- Cosmological parameters $H_0 = 70 \text{ km/s/Mpc}, \ \Omega_m = 0.3 \text{ and } \Omega_\Lambda = 0.7$
- Initial mass function: $|\psi_{\rm IMF}(M) \propto M^{-2.35}$ (Salpeter)

$$\frac{Formulation}{dE_{\nu}} = c \int_{0}^{z_{\text{max}}} \frac{dz}{H_{0}\sqrt{\Omega_{m}(1+z)^{3}+\Omega_{\Lambda}}} \times \left[\frac{R_{\text{CC}}(z)}{\int_{0}^{Z_{\text{max}}}} \psi_{\text{ZF}}(z,Z) \left\{ \int_{M_{\text{min}}}^{M_{\text{max}}} \psi_{\text{IMF}}(M) \frac{dN(M,Z,E_{\nu}')}{dE_{\nu}'} dM \right\} dZ \right]$$

• Core collapse rate: $R_{CC}(z) = \phi_*(z) \times \frac{\int_{M_{\min}}^{M_{\max}} \psi_{IMF}(M) \, dM}{\int_{0.1M_{\odot}}^{100M_{\odot}} M \psi_{IMF}(M) \, dM}$ cosmic star formation rate

related to stellar mass distribution of galaxies

(Drory & Alvarez, 2008)

$$\dot{\rho}_{*}(z) = \int_{0}^{\infty} \underline{\dot{M}_{*}(M_{*}, z)} \phi_{\rm SMF}(M_{*}, z) \, dM_{*}$$
SFR of galaxy stellar mass function

Cosmic star formation rate

- It has a peak at redshift z ~ 1-2, but uncertainty is large.
- → conversion from UV luminosity to star formation rate of galaxy
- → dust obscuration correction
- Note: Contribution from stars in z > 2 is small.

Observation of galaxies Hopkins & Beacom (2006) Drory & Alvarez (2008)

Theoretical model Kobayashi et al. (2013)

$$\frac{Formulation}{dE_{\nu}} = c \int_{0}^{z_{\text{max}}} \frac{dz}{H_{0}\sqrt{\Omega_{m}(1+z)^{3}+\Omega_{\Lambda}}} \times \left[R_{\text{CC}}(z) \int_{0}^{Z_{\text{max}}} \frac{\psi_{\text{ZF}}(z,Z)}{\psi_{\text{ZF}}(z,Z)} \left\{ \int_{M_{\text{min}}}^{M_{\text{max}}} \psi_{\text{IMF}}(M) \frac{dN(M,Z,E_{\nu}')}{dE_{\nu}'} \, dM \right\} dZ \right]$$

• Metallicity distribution function of progenitors mass metallicity relation (Maiolino+, 2008)

$$\int_{0}^{Z} \psi_{\rm ZF}(z, Z') \, \mathrm{d}Z' = \frac{\int_{0}^{M_{*}(z, Z)} \dot{M}_{*}(M'_{*}, z) \phi_{\rm SMF}(M'_{*}, z) \, \mathrm{d}M'_{*}}{\int_{0}^{\infty} \underline{\dot{M}_{*}(M'_{*}, z)} \phi_{\rm SMF}(M'_{*}, z) \, \mathrm{d}M'_{*}}$$
SFR of galaxy stellar mass function (Drory & Alvarez, 2008)

Cosmic chemical evolution

- Old stars are low metallicity.
- Low metallicity stars have massive cores.
 → Failed supernova progenitors are included.

Fraction of failed supernovae

• It increases with redshift because metal poor stars are abundant in high redshift universe.

Spectra of SN relic neutrinos

- Uncertainty is large in low energy region.
- Reflecting large uncertainty of cosmic star formation rate in high redshift universe

Spectra of SN relic neutrinos

- Uncertainty is large in high energy region.
- If the shock revival is late, proto-neutron star is heated and neutrino spectrum gets hard.

Spectra of SN relic neutrinos

- Uncertainty is large in high energy region.
- If the EOS is hard, the black hole formation is delayed and neutrino spectrum gets hard.

Uncertainties on SRN spectrum

- Uncertainty on SRN spectrum in low energies is mainly from cosmic star formation rate.
- To investigate star formation history, low energy is better and SK-Gd is promising.

<u>Outline</u>

- 1. Introduction
- 2. What does SRN spectrum depend on?

involving metallicity evolution of galaxies (K. Nakazato et al. 2015, ApJ 804, 75)

Comparison with noise BG
 Summary

$$\frac{Formulation}{dE_{\nu}} = c \int_{0}^{z_{\max}} \frac{dz}{H_{0}\sqrt{\Omega_{m}(1+z)^{3}+\Omega_{\Lambda}}} \times \left(\frac{dE_{\nu}'}{dE_{\nu}} = 1+z \right) \\
\left[R_{CC}(z) \int_{0}^{z_{\max}} \psi_{ZF}(z,Z) \left\{ \int_{M_{\min}}^{M_{\max}} \psi_{IMF}(M) \frac{dN(M,Z,E_{\nu}')}{dE_{\nu}'} dM \right\} dZ \right]$$

- Min. mass of SN progenitors: $M_{\rm min} = 8$ or $10 M_{\odot}$
- Initial mass function $\psi_{\mathrm{IMF}}(M)$

Chabrier (2003);

Baldry, & Glazebrook (2003, SalpeterA);

Salpeter (1955)

Uncertainties of M_{min} and IMF

- These uncertainties are energy-independent.
- Uncertainty of IMF is largest at high energies, and as large as that of SFR at low energies.

Comparison with noise BG

- Detectability highly depends on uncertainties.
- Reduction of atmospheric NC is important.

<u>Outline</u>

- 1. Introduction
- 2. What does SRN spectrum depend on?

involving metallicity evolution of galaxies (K. Nakazato et al. 2015, ApJ 804, 75)

- 3. Comparison with noise BG
- 4. Summary

<u>Summary</u>

Uncertainties

	low energy	high energy
SFR	large	middle
<i>t</i> _{revive}	small	middle
EOS(BH)	small	middle
IMF	large	large
<i>M</i> _{min}	middle	middle

 To investigate the star formation history, low energy is better and SK-Gd is promising, but reduction of atmospheric NC is important.