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to explain the canonical supernova kinetic energy (∼1051 erg).
Moreover, the softer nuclear equation of state (EOS), such as the
Lattimer & Swesty (1991) (LS) EOS with an incompressibility
at nuclear densities, K, of 180 MeV, is employed in those
simulations. In addition to striking evidence that favors a
stiffer EOS based on the nuclear experimental data (K =
240 ± 20 MeV; Shlomo et al. 2006), the soft EOS may not
account for the recently observed massive neutron star of ∼2 M⊙
(Demorest et al. 2010).4 Using a stiffer EOS, the explosion
energy may be even lower as inferred by Marek & Janka
(2009) who did not obtain the neutrino-driven explosion for
their model with K = 263 MeV.5 What is then missing?
The neutrino-driven mechanism would be assisted by other
candidate mechanisms such as the acoustic mechanism (e.g.,
Burrows et al. 2006) or the magnetohydrodynamic mechanism
(e.g., Kotake et al. 2004; Takiwaki et al. 2004, 2009; Burrows
et al. 2007a; Guilet et al. 2011; Obergaulinger & Janka 2011;
Takiwaki & Kotake 2011; see also Kotake et al. 2006 for
collective references therein). We may find the answer by taking
into account new ingredients, such as exotic physics in the core
of the protoneutron star (PNS; e.g., Takahara & Sato 1988;
Sagert et al. 2009), viscous heating by the magnetorotational
instability (Thompson et al. 2005; Masada et al. 2012), or energy
dissipation via Alfvén waves (Suzuki et al. 2008).

But before seeking alternative scenarios, it may be of primary
importance to investigate how the explosion criteria extensively
studied so far in 2D simulations could or could not be changed
in three-dimensional (3D) simulations. Nordhaus et al. (2010)
are the first to argue that the critical neutrino luminosity
for producing neutrino-driven explosions becomes smaller in
3D than in 2D. They employed the CASTRO code with an
adaptive mesh refinement technique, by which unprecedentedly
high-resolution 3D calculations were made possible. Since it
is generally computationally expensive to solve the neutrino
transport in 3D, they employed a light-bulb scheme (e.g., Janka
& Müller 1996) to trigger explosions, in which the heating and
cooling by neutrinos are treated by a parametric manner. Since
the light-bulb scheme can capture fundamental properties of
neutrino-driven explosions (albeit on the qualitative grounds), it
is one of the most prevailing approximations adopted in recent
3D models (e.g., Iwakami et al. 2008, 2009; Wongwathanarat
et al. 2010). A number of important findings have been reported
recently in these simulations, including a potential role of non-
axisymmetric SASI flows in generating spins (Wongwathanarat
et al. 2010; Rantsiou et al. 2011; see also Blondin & Mezzacappa
2007; Fernández 2010) and magnetic fields (Endeve et al. 2010)
of pulsars, the stochastic nature of gravitational-wave (e.g.,
Kotake et al. 2009b, 2011; Müller et al. 2012), and neutrino
emission (e.g., Duan & Kneller 2009).

To go beyond the light-bulb scheme, in this study we explore
possible 3D effects in the supernova mechanism by perform-
ing 3D, multigroup, and radiation-hydrodynamic core-collapse
simulations. For the multigroup transport, the IDSA scheme is
implemented, which can be done in a rather straightforward
manner by extending our 2D modules (Suwa et al. 2010; Suwa
et al. 2011) to 3D. This can be made possible because we ap-
ply the so-called ray-by-ray approach (e.g., Buras et al. 2006) in
which the neutrino transport is solved along a given radial direc-
tion assuming that the hydrodynamic medium for the direction

4 The maximum mass for the LS180 EOS is about 1.8 M⊙ (e.g., O’Connor &
Ott 2011; Kiuchi & Kotake 2008).
5 On the other hand, they obtained 2D explosions for Shen EOS
(K = 281 MeV, H.-T. Janka, private communication).

is spherically symmetric. From a technical point of view, it is
worth mentioning that the ray-by-ray treatment is highly effi-
cient in parallization6 on present supercomputers, most of which
employ the message-passing-interface (MPI) routines. We fo-
cus here on the evolution of an 11.2 M⊙ star of Woosley et al.
(2002). We first choose such a lighter progenitor star, not only
because we follow a pattern in the 2D literature (e.g., Buras et al.
2006; Burrows et al. 2006), but also because the neutrino-driven
shock revival for the progenitor was reported to occur rather ear-
lier after the bounce in the 2D models by Buras et al. (2006).
We anticipate that the cost of 3D simulations would not be too
expensive for the progenitor. By comparing with our 1D and 2D
results, we study how the increasing multi-dimensionality could
affect the postbounce supernova dynamics.

The paper begins with descriptions of the initial models
and the numerical methods (Section 2). The main results are
presented in Section 3. We summarize our results and discuss
their implications in Section 4.

2. NUMERICAL METHODS AND INITIAL MODELS

The basic evolution equations for our 3D simulations are
written as

dρ

dt
+ ρ∇ · v = 0, (1)

ρ
dv
dt

= −∇P − ρ∇Φ, (2)

∂e∗

∂t
+ ∇ · [(e∗ + P )v] = −ρv · ∇Φ + QE, (3)

dYe

dt
= ΓN, (4)

△ Φ = 4πGρ, (5)

where ρ, v, P , v, e∗, Φ, are density, fluid velocity, gas pres-
sure including the radiation pressure of neutrinos, total energy
density, gravitational potential, respectively. d

dt
denotes the La-

grangian derivative. As for the hydro-solver, we employ the
ZEUS-MP code (Hayes et al. 2006) which has been modified
for core-collapse simulations (e.g., Iwakami et al. 2008, 2009).
QE and ΓN (in Equations (3) and (4)) represent the change of
energy and electron fraction (Ye) due to the interactions with
neutrinos. To estimate these quantities, we employ the IDSA
scheme (Liebendörfer et al. 2009). The IDSA scheme splits the
neutrino distribution into two components, both of which are
solved using separate numerical techniques. Although the cur-
rent IDSA scheme does not yet include heavy lepton neutrinos
(νx) and the inelastic neutrino scattering with electrons, these
simplifications save a significant amount of computational time
compared to the canonical Boltzmann solvers (see Liebendörfer
et al. 2009 for more details). As already mentioned, we employ
the ray-by-ray approximation, by which the 3D radiation trans-
port is reduced essentially to the 1D problem. Following the
prescription in Müller et al. (2010), we improve the accuracy of
the total energy conservation by using a conservation form in
Equation (3), instead of solving the evolution of internal energy
as originally designed in the ZEUS code. A Poisson equation (in
Equation (5)) can be solved either by the ICCG7 method in the
original ZEUS-MP code or by the multi-domain spectral method

6 Along each radial ray.
7 Incomplete Cholesky Conjugate Gradient.
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energy may be even lower as inferred by Marek & Janka
(2009) who did not obtain the neutrino-driven explosion for
their model with K = 263 MeV.5 What is then missing?
The neutrino-driven mechanism would be assisted by other
candidate mechanisms such as the acoustic mechanism (e.g.,
Burrows et al. 2006) or the magnetohydrodynamic mechanism
(e.g., Kotake et al. 2004; Takiwaki et al. 2004, 2009; Burrows
et al. 2007a; Guilet et al. 2011; Obergaulinger & Janka 2011;
Takiwaki & Kotake 2011; see also Kotake et al. 2006 for
collective references therein). We may find the answer by taking
into account new ingredients, such as exotic physics in the core
of the protoneutron star (PNS; e.g., Takahara & Sato 1988;
Sagert et al. 2009), viscous heating by the magnetorotational
instability (Thompson et al. 2005; Masada et al. 2012), or energy
dissipation via Alfvén waves (Suzuki et al. 2008).

But before seeking alternative scenarios, it may be of primary
importance to investigate how the explosion criteria extensively
studied so far in 2D simulations could or could not be changed
in three-dimensional (3D) simulations. Nordhaus et al. (2010)
are the first to argue that the critical neutrino luminosity
for producing neutrino-driven explosions becomes smaller in
3D than in 2D. They employed the CASTRO code with an
adaptive mesh refinement technique, by which unprecedentedly
high-resolution 3D calculations were made possible. Since it
is generally computationally expensive to solve the neutrino
transport in 3D, they employed a light-bulb scheme (e.g., Janka
& Müller 1996) to trigger explosions, in which the heating and
cooling by neutrinos are treated by a parametric manner. Since
the light-bulb scheme can capture fundamental properties of
neutrino-driven explosions (albeit on the qualitative grounds), it
is one of the most prevailing approximations adopted in recent
3D models (e.g., Iwakami et al. 2008, 2009; Wongwathanarat
et al. 2010). A number of important findings have been reported
recently in these simulations, including a potential role of non-
axisymmetric SASI flows in generating spins (Wongwathanarat
et al. 2010; Rantsiou et al. 2011; see also Blondin & Mezzacappa
2007; Fernández 2010) and magnetic fields (Endeve et al. 2010)
of pulsars, the stochastic nature of gravitational-wave (e.g.,
Kotake et al. 2009b, 2011; Müller et al. 2012), and neutrino
emission (e.g., Duan & Kneller 2009).

To go beyond the light-bulb scheme, in this study we explore
possible 3D effects in the supernova mechanism by perform-
ing 3D, multigroup, and radiation-hydrodynamic core-collapse
simulations. For the multigroup transport, the IDSA scheme is
implemented, which can be done in a rather straightforward
manner by extending our 2D modules (Suwa et al. 2010; Suwa
et al. 2011) to 3D. This can be made possible because we ap-
ply the so-called ray-by-ray approach (e.g., Buras et al. 2006) in
which the neutrino transport is solved along a given radial direc-
tion assuming that the hydrodynamic medium for the direction

4 The maximum mass for the LS180 EOS is about 1.8 M⊙ (e.g., O’Connor &
Ott 2011; Kiuchi & Kotake 2008).
5 On the other hand, they obtained 2D explosions for Shen EOS
(K = 281 MeV, H.-T. Janka, private communication).

is spherically symmetric. From a technical point of view, it is
worth mentioning that the ray-by-ray treatment is highly effi-
cient in parallization6 on present supercomputers, most of which
employ the message-passing-interface (MPI) routines. We fo-
cus here on the evolution of an 11.2 M⊙ star of Woosley et al.
(2002). We first choose such a lighter progenitor star, not only
because we follow a pattern in the 2D literature (e.g., Buras et al.
2006; Burrows et al. 2006), but also because the neutrino-driven
shock revival for the progenitor was reported to occur rather ear-
lier after the bounce in the 2D models by Buras et al. (2006).
We anticipate that the cost of 3D simulations would not be too
expensive for the progenitor. By comparing with our 1D and 2D
results, we study how the increasing multi-dimensionality could
affect the postbounce supernova dynamics.

The paper begins with descriptions of the initial models
and the numerical methods (Section 2). The main results are
presented in Section 3. We summarize our results and discuss
their implications in Section 4.

2. NUMERICAL METHODS AND INITIAL MODELS

The basic evolution equations for our 3D simulations are
written as

dρ

dt
+ ρ∇ · v = 0, (1)

ρ
dv
dt

= −∇P − ρ∇Φ, (2)

∂e∗

∂t
+ ∇ · [(e∗ + P )v] = −ρv · ∇Φ + QE, (3)

dYe

dt
= ΓN, (4)

△ Φ = 4πGρ, (5)

where ρ, v, P , v, e∗, Φ, are density, fluid velocity, gas pres-
sure including the radiation pressure of neutrinos, total energy
density, gravitational potential, respectively. d

dt
denotes the La-

grangian derivative. As for the hydro-solver, we employ the
ZEUS-MP code (Hayes et al. 2006) which has been modified
for core-collapse simulations (e.g., Iwakami et al. 2008, 2009).
QE and ΓN (in Equations (3) and (4)) represent the change of
energy and electron fraction (Ye) due to the interactions with
neutrinos. To estimate these quantities, we employ the IDSA
scheme (Liebendörfer et al. 2009). The IDSA scheme splits the
neutrino distribution into two components, both of which are
solved using separate numerical techniques. Although the cur-
rent IDSA scheme does not yet include heavy lepton neutrinos
(νx) and the inelastic neutrino scattering with electrons, these
simplifications save a significant amount of computational time
compared to the canonical Boltzmann solvers (see Liebendörfer
et al. 2009 for more details). As already mentioned, we employ
the ray-by-ray approximation, by which the 3D radiation trans-
port is reduced essentially to the 1D problem. Following the
prescription in Müller et al. (2010), we improve the accuracy of
the total energy conservation by using a conservation form in
Equation (3), instead of solving the evolution of internal energy
as originally designed in the ZEUS code. A Poisson equation (in
Equation (5)) can be solved either by the ICCG7 method in the
original ZEUS-MP code or by the multi-domain spectral method

6 Along each radial ray.
7 Incomplete Cholesky Conjugate Gradient.
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Figure 1: Schematic representation of the evolutionary stages from stellar core collapse through the onset of
the supernova explosion to the neutrino-driven wind during the neutrino-cooling phase of the proto-neutron
star (PNS). The panels display the dynamical conditions in their upper half, with arrows representing velocity
vectors. The nuclear composition as well as the nuclear and weak processes are indicated in the lower half
of each panel. The horizontal axis gives mass information. MCh means the Chandrasekhar mass and Mhc

the mass of the subsonically collapsing, homologous inner core. The vertical axis shows corresponding radii,
with RFe, Rs, Rg, Rns, and Rν being the iron core radius, shock radius, gain radius, neutron star radius, and
neutrinosphere, respectively. The PNS has maximum densities ρ above the saturation density of nuclear matter
(ρ0).
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with RFe, Rs, Rg, Rns, and Rν being the iron core radius, shock radius, gain radius, neutron star radius, and
neutrinosphere, respectively. The PNS has maximum densities ρ above the saturation density of nuclear matter
(ρ0).
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Figure 1. Three-dimensional plots of entropy per baryon (top panel), τres/τheat
(bottom left panel), which is the ratio of the residency to the neutrino-heating
timescale (see the text for details), and the net neutrino-heating rate (bottom
right panel, in units of erg cm−3 s−1) for three snapshots (top and bottom left:
t = 230 ms, and bottom right: t = 150 ms measured after the bounce (t ≡ 0) of
our model 3D-H-1). The contours on the cross sections in the x = 0 (back right),
y = 0 (back bottom), and z = 0 (back left) planes are projected on the sidewalls
of the graphs. For each snapshot, the length of the white line is indicated in the
bottom right text.
(A color version of this figure is available in the online journal.)

shock expansion in this study. It should be mentioned that, by
comparing our νx luminosity estimated by the leakage scheme
with that obtained by the work of Buras et al. (2006) with
detailed neutrino transport, the peak luminosity is more than
20% smaller in our case. Such underestimation of cooling
by heavy-lepton neutrinos should lead to artificially larger
maximum shock extent (Rmax ∼ 260 km, blue line in the right
panel of Figure 2) compared to Rmax ∼ 170 km in Buras et al.
(2006). We have to emphasize that the use of the leakage scheme,
together with the omission of inelastic neutrino scattering on
electrons and general relativity (GR) effects in the present
scheme, is likely to facilitate artificially easier explosions.
Regarding our 2D models, the relatively earlier shock revival
(∼100 ms postbounce) coincides with the decline of the mass
accretion rate onto the central PNS. This could be the reason
that the timescale is similar to that in Müller et al. (2012) who
reported 2D (GR) models for the same progenitor model with
detailed neutrino transport.

As seen from Figure 3, the angle-averaged neutrino lu-
minosity (⟨Lν⟩) and the mean neutrino energy (⟨ϵν⟩ =∫

E3F sdE/
∫

E2F sdE, where E is neutrino energy) are barely
affected by the imposed initial perturbations (presumably at a
few-percent levels in amplitude). This again supports our finding
that the explosion stochasticity is very influential in determining
the blast morphology but not the working of the neutrino-heating
mechanism.

From the bottom panel of Figure 3, it can be seen that
the overall trend in the neutrino luminosities and the mean
energies is similar between our 3D and 2D models. The neutrino
luminosities in the 2D model (green lines) show a short-time
variability (with periods of milliseconds to !10 ms) after around
100 ms postbounce. Such fast variations in the postbounce
luminosity evolution have been already found in previous 2D
studies (e.g., Ott et al. 2008; Marek et al. 2009). This is caused
by the modulation of the mass accretion rate due to convective
plumes and downflows hitting onto the PNS surface (see also
Lund et al. 2012 and Tamborra et al. 2013 about the detectability
of these neutrino signals). It is interesting to note that such a
fast variability is less pronounced in our 3D model (red lines
in the bottom panel). This is qualitatively consistent with Lund
et al. (2012) who analyzed the neutrino signals from 2D and 3D
models, in which an approximate neutrino transport was solved
(Wongwathanarat et al. 2010) as in Scheck et al. (2006).

Figure 4 shows the evolution of the average PNS radius
for the 1D (blue line), 2D (green line), and 3D models (red
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ü  All models exhibit shock revival. 
The shock reaches at r = 100,000 km 
(nearly the bottom of He layer)  
within t = 7-8 s. 

ü  s11.2 model 
shows almost converged Eexp & MPNS. 
Eexp = 0.19 foe, MPNS = 1.36 Mo 

ü  s17.0 model 
 shows still growing Eexp & MPNS at t ~ 7s. 
 Eexp = = 1.23 foe, MPNS = 1.85 Mo 

ü  s27.0 model 
is similar to s17.0 models, but  the PNS 
mass reaches the limit （MPNS = 2.13 Mo） 
predicted by 1D GR simulation. 
(O’Connor & Ott ’11; KN+’15)	


Long-term CCSN simulation	




Multi-messenger signals from 17Mo CCSN	
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Matzner & McKee’99 
(Mej, Eexp, R*)	


Popov’93 
(Mej, Eexp, R*)	
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Neutrino - signals & detectors	


"Delayed coincidence"	


ü Water-Cherenkov detector 
-  Super Kamiokande (33 kton) 
-  Hyper Kamiokande (740 kton) 

ü Reaction channels 
-  electron scattering 
-  inverse beta decay 

Gd-doped SK/HK can drastically suppress 
the background noise (Beacom & Vagins '04). 

    ← Nakahata-san's talk	




ü Water-Cherenkov detector 
-  Super Kamiokande (33 kton) 
-  Hyper Kamiokande (740 kton) 

ü Reaction channels 
-  electron scattering 
-  inverse beta decay 

Neutrino - Galactic event @ 8.5 kpc	


Number of targets	


ü Observed event rate: 

ü  Timing information (via IBD): 
the bounce time within ± 3.0 ms (HK) 
at 95% confidence level. 

ü  Pointing information (via e- scattering): 
~ 6° (SK), ~ 3° (Gd-SK),  
      ~ 0.6° (Gd-HK), ~ 0.3° (DUNE) 



Gravitational wave detectors	


KAGRA (Japan)	


LIGO - Hanford (USA)	


LIGO - Livingston (USA)	


Virgo (Italy)	




GW - Galactic event @ 8.5 kpc	

Inputted / reconstructed 

waveform	


S/N ratio	


Spectrogram	


ü Coherent network analysis 
(Hayama et al. 2015) 
 → hard to see time-dependent 
      waveform structure... 
 

ü With the aid of the timing information 
 → small time window [0, 60] ms. 
  

ü  Prompt convection 
→ small frequency window 
    [50, 500] Hz. 

ü  The maximum S/N ratio ~ 7.5 
→ CCSN-GW is detectable!  
→ Core rotation (Yokozawa+’15) 



Electromagnetic wave	
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ü  Shock breakout (Matzner & McKee '99)	


ü  Plateau phase (Popov '93)	


ü  Tail phase (Nadyozhin '94) 
powered by radioactive decay 



Galactic event - EM	


ü  To find SBO and/or early light curve signals 
in a error circle identified by SK (~6 deg. = ~ 28 deg2.), 

ü  we have to take 
20 images by Subaru-HSC, 
within a typical SBO duration time 30 minutes. 

ü  Integral time a for each image is 
(a+0.5)*20=30 → a=1 min. → 24-25 mag. 

Opt.	
 NIR	




Time sequence of observations:  
MM signals from a future Galactic CCSN event	


Red Supergiant (RSG) progenitor 
 → Type II SN	


Wolf-Rayet (WR) progenitor 
 → Type Ib/c SN	


SBO	


(pre-SN neutrino)	


neutrino burst	


R* ~ 1011 cm 
→ Δt ~ R*/v ~ 100 s (a few minutes) !	


R* ~ 1013-14 cm, shock velocity ~ 109 cm/s 
→ Δt ~ R*/v ~ 104-5 s (a few hours - a day)	


Distribute ALERT !	




Neutrino from extragalactic events	


SN rate jumps at D ~ 3 Mpc.	


Nearby galaxies within 4 Mpc.	


Probability of neutrino detection 
& cumulative CCSN rate as a function of D. 
HK is assumed.	




Summary	


Ø  Long-term simulations for representative models. 
Selected progenitors with small/middle/high compactness ξ  
(M = 11.2, 17.0, 27.0 Mo). 
→ multi-messenger signals 

 neutrino: Lν, f(Eν) 
 GW: h, EGW 

 EM: L 

Ø  Toward multi-messenger astronomy 
Trigger = neutrino detection.  
→ timing & pointing information 
→ GW detection. 
 → EM counterpart search. 

KN+ (2015), arXiv:1406.2415 
KN+, submitted to MNRAS, arXiv:1602.03028	


The next Galactic supernova is expected to bring great opportunities for the 
direct detection of multi-messenger signals. 
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