Prospects for detecting the DSNB in JUNO

Workshop on Underground Physics Tokyo University, 13 May 16 Michael Wurm (JGU Mainz)

on behalf of the JUNO collaboration

Supernova neutrinos

neighbouring galaxy clusters ~1SN per year **DSNB** 10⁸SN per year cosmic background

GDC

250 IBDs/kt — present detectors

Mton++ detectors

1 IBD/(10kt·yrs) low-background v-observatories

Contents of this talk

- DSNB signal
- Irreducible backgrounds
- Cherenkov vs. LS detectors
- Backgrounds in LS
- Pulse shape discrimination
- Sensitivity of JUNO

DSNB 10⁸SN per year cosmic background

DSNB prediction

Michael Wurm

80

DSNB spectrum and flux

DSNB irreducible backgrounds

DSNB detection window

DSNB detection in Super-Kamiokande

- Iarge target mass: 25 kt
 - \rightarrow order 2-3 events/yr expected
- but: delayed neutron capture in IBDs hard to tag (see later)
 - \rightarrow additional backgrounds

Most recent limit from SK 2011 analysis

Backgrounds in pure water

- solar neutrinos (⁸B): E>16MeV
- IBDs from atmospheric v_e's
- Michel electrons from CC of low-energy atmospheric v_μ's (a.k.a. "invisible muons")
- NC elastic scattering of atm. v's
 π misidentifcation

positron energy [MeV]

Prospects of detection in water

Several options:

- increase statistics drastically
 - → Hyper-Kamiokande

Prospects of detection in water

Several options:

- increase statistics drastically
 Hyper-Kamiokande
- tag the delayed neutron
 - → by clever trigger logic (efficiency ~20%) → applied in SK
 - → by doping with gadolinium (efficiency ~60%) → GADZOOKS!

Alternative: Liquid scintillator (LS) detectors

main advantage: neutron tagging in IBD comes for free

ightarrow all single-event backgrounds can be easily rejected

Alternative: Liquid scintillator (LS) detectors

main advantage: neutron tagging in IBD comes for free → all single-event backgrounds can be easily rejected

present LS detectors:

- → Borexino (270t)
- → KamLAND (1000t)

DSNB signal in today's LS detectors?

- Search for extraterrestrial antineutrino sources: <u>arXiv:1105.3516</u>
- At low energies (E_v<8MeV): dominated by reactor background</p>
- At high energies (E_v>18MeV): SK provides better limits

Alternative: Liquid scintillator (LS) detectors

main advantage: neutron tagging in IBD comes for free
→ all single-event backgrounds can be easily rejected

present LS detectors:

- \rightarrow Borexino (270t)
- \rightarrow KamLAND (1000t)

future LS detectors:

→ JUNO (20kt)
 → RENO-50 (18kt)
 → LENA (50kt)

KamLAND's "high energy IBD" events

- target volume too small to discover the DSNB signal (only 0.1 kt⁻¹yr⁻¹)
- but sufficiently large to check for backgrounds

Background: The usual suspects

Cosmogenic βn-emitters: ⁹Li + ⁸He

μ

- Cosmic muon spallation on ¹²C in LS target: radioactive isotopes
- Neutron-rich isotopes: ⁹Li (τ=257ms, Q_{βn}≈10.5MeV), ⁸He
- β⁻-decay to excited state of daughter: neutron emission
- prompt β -like event followed by n-capture \rightarrow IBD signature

Fast neutrons

High-energy neutrons produced by muons in surrounding rocks μ Neutron enters the detector w/o triggering vetoes • Neutron recoils from a proton in the LS \rightarrow prompt signal • Neutron is captured in the LS \rightarrow delayed signal **Background reduction** surrounding muon veto passive shielding or fiducial volume cut: e.g. in JUNO (Jilei Xu): cut of 1m: 40 yr⁻¹ \rightarrow 2 yr⁻¹ pulse shape discrimination n for prompt event

Background: The usual suspects

Other inverse beta decays

- reactor antineutrinos
- atmospheric antineutrinos
 → defines observation window

µ-induced spallation isotopes

- βn-emitters: ⁹Li & ⁸He
- \rightarrow depth
- → veto using time, distancecorrelation to parent muon

External neutrons (µ-induced)

- fast-neutrons
- \rightarrow depth
- \rightarrow fiducial volume cut

Background: The usual suspects

Other inverse beta decays

- reactor antineutrinos
- \rightarrow defines observation window

µ-induced spallation isotopes

- βn-emitters: ⁹Li & ⁸He
- \rightarrow depth
- veto using time, distancecorrelation to parent muon

External neutrons (µ-induced)

- fast-neutrons
- \rightarrow depth
- ightarrow fiducial volume cut

Atmospheric neutrino NC reactions

Background: NC neutrino-nucleon scattering with neutron in final state

Atmospheric neutrino NC reactions

Background: NC neutrino-nucleon scattering with neutron in final state

Possible compositions of final states

There is a long list of final states with single neutrons ...

Reaction channel	Branching ratio
(1) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + {\rm n} + {}^{11}{\rm C}$	38.8%
(2) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + {\rm p} + {\rm n} + {}^{10}{\rm B}$	20.4%
(3) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + 2{\rm p} + {\rm n} + {}^{9}{\rm Be}$	15.9%
(4) $\nu_{\mathbf{x}} + {}^{12}\mathrm{C} \rightarrow \nu_{\mathbf{x}} + \mathrm{p} + \mathrm{d} + \mathrm{n} + {}^{8}\mathrm{Be}$	7.1%
(5) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + \alpha + p + n + {}^{6}{\rm Li}$	6.6%
(6) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + 2{\rm p} + {\rm d} + {\rm n} + {}^{7}{\rm Li}$	1.3%
(7) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + 3{\rm p} + 2{\rm n} + {}^{7}{\rm Li}$	1.2%
(8) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + {\rm d} + {\rm n} + {}^{9}{\rm B}$	1.2%
(9) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + 2{\rm p} + {\rm t} + {\rm n} + {}^{6}{\rm Li}$	1.1%
(10) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + \alpha + n + {}^{7}{\rm Be}$	1.1%
(11) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + 3{\rm p} + {\rm n} + {}^{8}{\rm Li}$	1.1%
other reaction channels	4.2%

Total rate found in KamLAND: 3.6±1.0 kt⁻¹yr⁻¹

 \rightarrow more than an order of magnitude greater than DSNB signal!

BG rejection: Delayed decays

Discrimination based on delayed signal from **decay of the final state nucleus**:

BG rejection: Delayed decays

Discrimination based on delayed signal from **decay of the final state nucleus**:

NC BG reduction 1: Delayed Decays

Several of the spallation isotopes produced are not stable:

Reaction channel	Branching ratio	
(1) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + {\rm n} + {}^{11}{\rm C}$	38.8 % -	taggable
(2) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + {\rm p} + {\rm n} + {}^{10}{\rm B}$	20.4% -	→ stable
(3) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + 2{\rm p} + {\rm n} + {}^{9}{\rm Be}$	15.9% -	→ stable
(4) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + {\rm p} + {\rm d} + {\rm n} + {}^{8}{\rm Be}$	7.1 %	too fast
(5) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + \alpha + p + n + {}^{6}{\rm Li}$	6.6% -	→ stable
(6) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + 2{\rm p} + {\rm d} + {\rm n} + {}^{7}{\rm Li}$	1.3% -	→ stable
(7) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + 3{\rm p} + 2{\rm n} + {}^{7}{\rm Li}$	1.2% -	→ stable
(8) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + {\rm d} + {\rm n} + {}^{9}{\rm B}$	1.2% –	too fast
(9) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + 2{\rm p} + {\rm t} + {\rm n} + {}^{6}{\rm Li}$	1.1 % -	→ stable
(10) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + \alpha + n + {}^{7}{\rm Be}$	1.1 %	too slow
(11) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + 3{\rm p} + {\rm n} + {}^{8}{\rm Li}$	1.1 % -	taggable
other reaction channels	4.2%	

→ potentially allows to tag about 40% of the NC background events
 → remaining amount is still several times the DNSB signal

Michael Wurm

NC BG reduction 2: Pulse Shape

Background: NC neutrino-nucleon scatterings with neutron in final state

Pulse Shape measurements

Light emission of LS depends on particle type:

LS samples studied here: LAB + 2-3 g/l PPO [+20mg/l Bis-MSB] used in SNO+, JUNO, LENA

 \rightarrow long fluorescence components increase with dE/dx of particles

Michael Wurm

DSNB

The beam setup at TUM

J. Winter, V. Zimmer

pressure

gauge

beam

tube

Tandem van-de-Graaf accelerator at MLL

- ¹¹B (61.5MeV) on fixed proton (H₂) target
- neutrons of 11.2 MeV, γ 's of <4 MeV
- → measure **pulse shapes** (and quenching)

Michael Wurm

valve

Scintillator sample for y,n-scattering

J. Winter, V. Zimmer

Rail system

- test cell can be moved from on-axis position
- selection of neutron energy: [4.7;11.2] MeV

Test cell

- Container with LS sample, light read-out by PMT [ΔE/E ~7% at 1MeV]
- gammas and neutrons scatter in the LS sample
- \rightarrow recoil electrons, protons

Gamma/Neutron separation by timing

J. Winter, V. Zimmer

Time of flight from neutron source to LS sample

\rightarrow unambiguous samples of gamma (e) and neutron (p) events

Michael Wurm

DSNB

Analyzing pulse shapes

Simple method: Ratio of tail area to total area (tail-to-total)

$\rightarrow \alpha$'s and neutrons feature higher t2t-ratios than β 's and γ 's

Neutron-gamma separation at low energies

Simple method: Ratio of tail area to total area (tail-to-total)

\rightarrow separation possible, but overlap of distributions

Separation power vs. visible energy (1)

pulse shapes become more distinct with increasing photon statistics
 separation capability improves with energy

Michael Wurm

Separation power vs. visible energy (2)

→ in lab-scale samples, separation between electrons and hadrons improves steeply with visible energy of the events

DSNB

JUNO physics program

Reactor neutrino oscillations

- neutrino mass hierarchy
- precise measurement of osc. parameters: $\Delta m_{21}^2 \sim 0.6\%$, $\Delta m_{ee}^2 \sim 0.4\%$, $\sin^2\theta_{12} \sim 0.7\%$
- Neutrinos from natural sources
 - Galactic Supernova neutrinos
 - Diffuse Supernova Neutrino Background
 - Solar neutrinos
 - Geoneutrinos
 - Neutrinos from dark matter annihilation
 - Atmospheric neutrinos
- Short-baseline oscillations (sterile v's)
- Proton decay into K⁺v

→ JUNO Yellow Book, arXiv:1507.05613

JUNO detector layout

Michael Wurm

JUNO detector layout – details

Michael Wurm

JUNO rock shielding

Backgrounds to DSNB detection

w/o pulse shape discrimination:

- atmospheric v NC reactions
- fast neutrons

dominate the DSNB signal

Event rates in the 11-30MeV range:

	Contribution	Rate [yr⁻¹]
lal	<e<sub>v>=12MeV</e<sub>	1.3
Sigr	<e<sub>v>=15MeV</e<sub>	2.3
SNB	<e<sub>v>=18MeV</e<sub>	3.3
Ď	<e<sub>v>=21MeV</e<sub>	3.9
S	Reactor v's	0.03
nnd	Atm. v's CC	0.13
gro	Atm. v's NC	60
3ack	Fast neutrons	2.0
	Total	62

Pulse shape discrimination in large detectors

From lab experiments to JUNO

- starting point: light emission curves aquired in lab experiment
- add light propagation effects to PMTs (scattering, n(λ) etc.)
- PMT time resolution effects
- \rightarrow signal as observed in experiment

Pulse shape analysis in JUNO

- reconstruction of event vertex from photon arrival time distribution
- subtraction of photon TOF effects
- \rightarrow original fluorescence profile

Up to now: PSD performance based on LENA MC (~1/4 of JUNO light yield)

Pulse Shape Discrimination for DSNB

PSD to be used not only for atmospheric NC but also fast neutron background:

PSD efficiencies vs. signal acceptance

IBD acceptance		FN rejection	NC rejection	
	95%	84.3%	66.6%	
	90%	91.8%	87.4%	
	80%	95.2%	94.8%	
	55%	97.8%	98.9%	
	50%	98.1%	99.1%	
	40%	98.5%	99.3%	

→ IBD acceptance has to be reduced to ~50% to obtain sufficient BG rejection → fast neutron detection allows to use almost the entire scintillator volume

Michael Wurm

DSNB backgrounds after PSD

Michael Wurm

Predicted DSNB signal and background rates

	Contribution	Rate [yr⁻¹]	PSD efficiency	Rate w/ PSD [yr ⁻¹]
lal	<e<sub>v>=12MeV</e<sub>	1.3	50%	0.7
Sign	<e<sub>v>=15MeV</e<sub>	2.3		1.2
SNB	<e<sub>v>=18MeV</e<sub>	3.3		1.6
<u> </u>	<e<sub>v>=21MeV</e<sub>	3.9		1.9
S	Reactor v's	0.03	50%	0.01
nnd	Atm. v's CC	0.13	50%	0.07
groi	Atm. v's NC	60	1.1%	0.62
Back	Fast neutrons	2.0	1.3%	0.02
_	Total	61		0.7

→ DSNB statistics reduced to half the original value, but $S:B \ge 1$

 \rightarrow collecting statistics for several years, spectral information becomes available

DSNB sensitivity of JUNO (preliminary)

from JUNO Yellow Book [arXiv:1507.05613]

- Discovery potential
 - exposure: 17kt x 10 yrs
 - syst. uncertainty on BG rate: 5%

→ possibility for evidence of DSNB signal at 3σ level

- Exclusion plot
 - same assumptions as before
 - only BG prediction detected
 - → significant improvement over current Super-K limit

Current activities in JUNO

- ightarrow porting the full analysis to JUNO MC framework
- ightarrow evaluate the JUNO-specific impact on PSD
- 4x larger photoelectron yield: improved discrimination power
- 2/3 of CD-PMTs with transit time spread of 12ns: mild reduction of PSD power expected

Neutron psd efficiency (40% IBD acceptance), % neutrons vs. e⁺ @ 22 MeV 99.6 based on LENA MC 99.55 99.5 99.45 99.4 99.35 99.3 99.25 99.2 2 8 10 Transit time spread (o), ns

Conclusions

- Detection of the DSNB will provide information on the average SN neutrino spectrum and the cosmic SN rate
- Positive evidence for the DSNB is just within reach of present and upcoming few-10kt detectors
- Liquid scintillator and especially JUNO will be able to contribute
- The primary background, atmospheric neutrino NC reactions, dominates the DSNB signal, but can be greatly reduced based on the excellent pulse-shaping capabilites expected for JUNO
- Preliminary study suggests 3σ evidence in JUNO after 10 years

More detailed studies are on-going.

Thank you!

The JUNO Collaboration

380 scientists, 60 institutions, 1/3 from Europe

Armenia, Austria, Belgium, Brazil, Chile, Chinese Republic, Czech Republic, Germany, Finland, France, Italy, Japan, Korea, Russia, Taiwan, and the United States

German institutes

EBERHARD KAI

Backup Slides

Potential of water-based scintillators

Potential of water-based scintillators

Adding scintillation to Cherenkov detector

compared to pure water

- adds neutron detection tag
- "invisible muons" no longer invisible

Adding scintillation to Cherenkov detector

compared to pure water

- adds neutron detection tag
- "invisible muons" no longer invisible
- but: appearance of atmospheric NC background?

Adding Cherenkov to scintillation detector

compared to pure water

- adds neutron detection tag
- "invisible muons" no longer invisible
- but: appearance of atmospheric NC background?

v_e

р

n

Schedule

Slope tunnel

Surface facilities

Surface facilities

Surface facilities

Michael Wurm

JUNO

Pulse-shape discrimination (PSD) I

better PMT timing: ~1ns (1 σ)

Pulse-shape discrimination (PSD) II

- based on tail-to-total ratio (&Gatti par)
- for 50% acceptance: DSNB rate: 0.7–1.9 yr⁻¹, BG rate: 0.6 yr⁻¹