### **CANDLES**の状況と将来

### A02: 48Ca を用いたニュートリノのマヨラナ性の研究と

#### 超高分解能技術の開発



#### CANDLES Collaboration

Candles

大阪大学理学研究科

岸本忠史、吉田斉、鈴木耕拓、角畑秀一、Wang Wei、Chan Wei Min、Van Trang、 石川貴志、田中大樹、田中美穂、土井原正明、前田剛、太畑貴綺、鉄野高之介

大阪大学RCNP

能町正治、味村周平、梅原さおり、中島恭平、飯田崇史、松岡健次

福井大工学部

玉川洋一、小川泉、川村篤史、富田翔悟、藤田剛志、原田知優、坂本康介、 吉澤真敦、犬飼祐司

徳島大総合科学 伏見賢一

大阪産業大学 硲隆太、中谷伸雄

佐賀大学文化教育学部 大隅秀晃

### A02: <sup>48</sup>Ca を用いたニュートリノのマヨラナ性の 研究と超高分解能技術の開発 -- CANDLES --

遮蔽

- <sup>48</sup>Caの2重ベータ崩壊の研究
  - CANDLES III(UG) 実験
    - 低BG化
    - 高分解能化
- <sup>48</sup>Caの濃縮技術の開発と濃縮
  - ββ崩壊核の増大とBG低減の同時達成
    - CE
       レーザー
       CE樹脂
       μリアクター
    - MCCCE
- ボロメーター技術の開発
   高エネルギー分解能化

# Why <sup>48</sup>Ca

- Highest Q value
  - 4.27 MeV, (<sup>150</sup>Nd: 3.3 MeV)
  - Little BG ( $\gamma$ : 2.6 MeV,  $\beta$ : 3.3 MeV)
  - Large phase space factor
- Small natural abundance:
  - 0.187%
  - Separated isotope  $\rightarrow$  expensive
- Next generation

 $- < m_v > \sim T^{-1/2} \sim M^{-1/2}$  (no BG) ~  $M^{-1/4}$  (BG limit

- ~ M<sup>-1/4</sup> (BG limited)
- Enrichment: mass+S/N: 500 times
- High resolution: bolometer(crystal)
- Beyond inverted hierarchy

- <sup>48</sup>Ca + enrichment + bolometer

3





## CANDLES III @ Kamioka

#### • CANDLES III











- Pulse shape information by 500 MHz Flash ADC
  - Typical Pulse Shapes







CaF2不純物起源のバックグラウンド事象



### 連続崩壊事象









エネルギー分解能向上(冷却)





Cool CANDLES III from 20 to 0 degrees. 40% increase: This year







# 中性子捕獲γ線遮蔽

CANDLES IIIシールド概念図



CANDLESタンク部分 🗕 鉛シールド(y線) 7~12cm ホウ素シート(中性子) 5mm 🥗 遮蔽:1/100に低減 ・鉛(タンク外側):岩盤からのy線を 止めるための鉛 ・ホウ素(タンク内側):タンク(SUS) に入る中性子を吸収 $(n, \gamma)$ を抑える



鉛(γ線) 橫:完成 上下



## Pb shield construction



• All the collaborators worked very hard! I used even professors like a horse ;)

Top Pb shield



Side Pb shield

**Bottom Pb shield** 

# B shield construction

> Neutron shield (B sheet) installation.



B4C 40wt% Silicone rubber (B sheet)

4-5mm thickness. Covered 100m<sup>2</sup> area

- For bottom B shield, liquid type was poured on top of the Pb.
- This is for both shielding neutron and waterproofing the bottom Pb blocks.
- B and Pb elution into water have been checked periodically after water filling.

## Energy spectra after shield



## Internal backgrounds and reduction

- External BGs were reduced by LS active shild.
- Remaining BGs are originating from internal radioactivity of Th chain (<sup>208</sup>Tl and <sup>212</sup>Bi-<sup>212</sup>Po).
- 2νββ is not serious BG in current sensitivity. (it will be major BG after 48Ca enrichment)
- We reject remaining BGs by analysis.



### Position reconstruction and crystal selection

 $\sum Npe(i)$ 

- Position of each event is reconstructed by weighted mean of observed charge in each PMT.  $\sum Npe(i) \times \overline{PMT(i)}$
- Crystal separation is  $\sim 7\sigma$  peak to peak.
  - Crystal selection criteria is within  $3\sigma$  from the peak.
- 27 clean crystals (Th contamination < 10  $\mu$ Bq/kg) out of 96 crystals are selected and the results are compared to all crystals.





#### Eneryg spectrum of prompt events (212Bi candidate)







### sensitivity

Preliminary

|                                              | Cut-1                                                                                                                                     | Cut-2                                                                                                                                  | Cut-3                                                                                                                           |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Cut condition                                | Chi2<1.5,-3σ <si<1σ,<br>-2σ<position<2σ,<br>DP&lt;2Onsec<br/>-1σ<onbb window<2σ<br="">with 208Tl cut</onbb></position<2σ,<br></si<1σ,<br> | chi2<1.5,-3σ <si<1σ,<br>-3σ<position<3σ,<br>DP&lt;20nsec<br/>-1σ&lt;0nbb window&lt;2σ<br/>with 208Tl cut</position<3σ,<br></si<1σ,<br> | chi2<1.5,-3σ <si<1σ,<br>-3σ<position<3σ,<br>DP&lt;2Onsec<br/>-1σ<onbb td="" window<2σ<=""></onbb></position<3σ,<br></si<1σ,<br> |
| Onbb efficiency                              | 0.389±0.057                                                                                                                               | $0.430 \pm 0.059$                                                                                                                      | $0.591 \pm 0.081$                                                                                                               |
| BG rate(exp)                                 | 0(27CaF),<br>10(95CaF)                                                                                                                    | 3,19                                                                                                                                   | 12,115                                                                                                                          |
| Exp BG rate                                  | 0.56,5.4(±100%)                                                                                                                           | 1.11,9.3(±100%)                                                                                                                        | 6.8,64(±100%)                                                                                                                   |
| 半減期<br>(exp BGが多い<br>ほど長い。)                  | 6.2×10 <sup>22</sup> year(27個)<br>3.8×10 <sup>22</sup> year(95個)                                                                          | 1.9×10 <sup>22</sup> year,<br>2.3×10 <sup>22</sup> year,                                                                               | 0.92×10 <sup>22</sup> year                                                                                                      |
| 感度 <b>(exp BG</b> が<br>少ないほど長<br>い。 <b>)</b> | 3.6×10 <sup>22</sup> year(27個)<br>6.2×10 <sup>22</sup> year(95個)<br>+100% BGで計算                                                           | 3.0×10 <sup>22</sup> year,<br>4.9×10 <sup>22</sup> year                                                                                |                                                                                                                                 |
|                                              |                                                                                                                                           |                                                                                                                                        | rep                                                                                                                             |

\*ELEGANT VI sensitivity efficiency :0.53, measurement time :4947kg · day, 5.8×10<sup>22</sup>年 24

- 物理的方法
  - 遠心分離法:ガスのみ(核燃料)
  - -レーザー法:実用化は?
    - R&D 仁木:反跳法

- テキサス大:MAGIS スピン偏極+磁場勾配
- 質量分析法:<sup>48</sup>Ca等、高価(10g/億)
- 化学的方法
  - 反応率の差:重水素、ホウ素
  - クラウンエーテル(CE)
    - 樹脂法 梅原+α

CE樹脂の自作 コスト~1/1000

- マイクロリアクター 硲+α



CE樹脂による48Ca濃縮



## Multi-channel counter current electrophoresis



#### MCCCE

- Separation using difference of migration speed between <sup>40</sup>Ca / <sup>48</sup>Ca.
- Principle was demonstrated.

 $R(MCCCE) = \frac{43Ca/48Ca(MCCCE)}{43Ca/48Ca(natural)}$ 

• Further study on parameter optimization

### High enrichment

#### Large amount

Enrichment (43/40): 3.08 (48/40): 6

BN plate 10 mm thick 0.8mmΦ, every 4 mm

**ΡΤΕΡ** 

Prog. Theor. Exp. Phys. **2015**, 033D03 (10 pages) DOI: 10.1093/ptep/ptv020

#### Calcium isotope enrichment by means of multi-channel counter-current electrophoresis for the study of particle and nuclear physics

T. Kishimoto<sup>1,2,\*</sup>, K. Matsuoka<sup>2</sup>, T. Fukumoto<sup>3</sup>, and S. Umehara<sup>2</sup>



# 改善(のはずだったが)

液送ポンプ
チュービングポンプから
ダブルプランジャーポンプへ
・スムーズかつ正確
泡、冷却系、その他

うまく働かず
 – ハーゲン・ポアズイユ流
 – チュービングポンプ

- イオン交換膜  $j_x = e\mu n \frac{d\phi}{dx} + eD\frac{dn}{dx}$ 



Peristaltic pump (tubing pump)





# 脈動の生成



#### ダブルプランジャーポンプ + チュービング(ペリスタルティック)ポンプ

制御:脈動、温度、イオン交換膜



30

ロータリーピストン ポンプ



 $j_x = e\mu n \frac{d\phi}{dx} + eD\frac{dn}{dx}$ 

MCCCE

## Bolometer

- 2vββ事象(Ultimate BG)
  - エネルギー分解能の改善→ Bolometer

- CaF2結晶内部の放射性不純物 (Th系列)
  - Th系列(β-α信号) → Bolometer (no quench)
  - Th系列(<sup>208</sup>TI) → 結晶細分化
    - ELEGANT-VIの経験から

10cm立方結晶 → 小型化 (4~5cmでOK)

- 環境中性子起源γ線
  - エネルギー分解能の改善+結晶小型化

#### Bolometer → 既存のBGは大きく低減可





# Scintillating Bolometer



• 熱量に加え、蛍光量も同時に測定

蛍光のα線のクエンチングを用いたα/β粒子識別

• <sup>238</sup>Uの崩壊事象(Q値=4.27 MeV = 0vββ崩壊のQ値)を排除

# Bolometer開発の現状(1)

• 冷却テスト





- •1K Potの減圧冷却までは実現済
- ~10mK冷却のための新しい<sup>3</sup>He/<sup>4</sup>He混合ガスシステムを 構築済
- 希釈冷凍機の各ステージの温度計の読み出しシステムも 構築済

# Bolometer開発の現状(2)

- 熱信号検出器
  - 結晶は1辺が2cmの立方体のCaF<sub>2</sub>(Pure)2個、 CaF<sub>2</sub>(Eu)2個を準備済
  - NTDGeサーミスター、結晶、信号線のインストールは完了
  - 熱信号読み出しシステムは構築済
- 光信号検出器
  - 光検出器の吸収体としてGeウェハーを準備済
  - 熱信号検出後にインストール予定
- ・シールド
  - 厚さ10cmの鉛と5cmの銅シールドを構築済







### A02: <sup>48</sup>Ca を用いたニュートリノのマヨラナ性の 研究と超高分解能技術の開発 -- CANDLES --

- <sup>48</sup>Caの2重ベータ崩壊の研究
  - CANDLES実験
    - 低BG化
    - 高分解能化
- <sup>48</sup>Caの濃縮技術の開発と濃縮
  - ββ崩壊核の増大とBG低減の同時達成
    - CE CE樹脂
       レーザー レリアクター
    - MCCCE

開発研究

希釈冷凍機

測定、解析継続

ボロメーター技術の開発
 – 高エネルギー分解能化