Angular measurement with NEMO3/SuperNEMO

F. Piquemal (CNRS/IN2P3 and Bordeaux University) CENBG

March,7 2019 Sendai

The NEMO technique aims to detect all particles and all kinematic parameters

Particle physic approach: to measure all kinematic parameters

NEMO-3 detector

Modane Underground Laboratory

(Laboratoire Souterrain de Modane, LSM, CNRS and Grenoble University)

1700 m (4800 m.w.e. under Fréjus mountain)

Э

Tracko-calo avantages

Vertex reconstruction:
possible identification of
« hot spots » on the source foil

Accurate measurement of $\beta\beta(2\nu)$ observables

Nuclear physics (ββ(2ν) half-life to extract N.M.E., HSD vs SSD)
To look for deviation from standard physics and search for exotic physics

Angular distribution between the 2 electrons

Slight discrepency between data and MC (MC modelisation of ;)tracking chamber, Left-right ambiguity, hot cells,...)

Calibration with ²⁰⁷Bi source

Calibration of angular distribution with ²⁰⁷Bi sources

For energy calibration, we used 60 ²⁰⁷Bi sources (3 per sector)

Possibility of emission of 2 EC \rightarrow calibration of the detector

Distribution checked sector by sector

Angular distribution after correction

Angular distribution for ¹⁰⁰Mo decay to excited states

Angular distribution for ¹⁰⁰Mo decay to excited states

¹⁰⁰Mo HSD vs SSD

⁸²Se HSD vs SSD

NEMO3 Results : first limit on $0v4\beta$

$$T_{1/2}^{0\nu4\beta} > 1.1 \times 10^{21}$$
 years,

16

F. Piquemal Sendai 2019

NEMO-3 results

Isotope	Mass (g)	Qββ(keV)	T(2v) (1E19yrs)	S/B	Comment	Reference
Se82	932	2996	9.6 ± 1.0	4	World's best	Phys.Rev.Lett. 95(2005) 483
Cd116	405	2809	2.8 ± 0.3	10	World's best	<u>Preliminary</u>
Nd150	37	3367	0.9 ± 0.07	2.7	World's best	Phys. Rev. C 80, 032501 (2009)
Zr96	9.4	3350	2.35 ± 0.21	1	World's best	Nucl.Phys.A 847(2010) 168
Ca48	7	4271	4.4 ± 0.6	6.8 (h.e.)	World's best	Preliminary
Mo100	6914	3034	0.71 ± 0.05	80	World's best	Phys.Rev.Lett. 95(2005) 483
Te130	454	2533	70 ± 14	0.5	First direct detection	Phys. Rev. Lett. 107, 062504 (2011)

Background contributions

Data sets	Phase 1	Phase 2	Combined
External background	< 0.04	< 0.16	< 0.2
²¹⁴ Bi from ²²² Rn	2.8 ± 0.3	2.5 ± 0.2	5.2 ± 0.5
²¹⁴ Bi internal	0.20 ± 0.02	0.80 ± 0.08	1.0 ± 0.1
²⁰⁸ Tl internal	0.65 ± 0.05	2.7 ± 0.2	3.3 ± 0.3
$2\nu\beta\beta$	1.28 ± 0.02	7.16 ± 0.05	8.45 ± 0.05
Total expected	4.9 ± 0.3	13.1 ± 0.3	18.0 ± 0.6
Data	3	12	15

Background : 3. 10⁻² evt/y/mole/FWHM

No background beyond 3.2 MeV

Main background components : $\beta\beta(2\nu)$ and radon

NEMO3 background

• Cu + Te sector

- Background checks
- No events with E > 3.1 MeV
- Exposure of 13.5 kg*y

• ¹⁰⁰Mo sectors

- No events with E > 3.2 MeV
- Exposure of 34.7 kg*y
- Background-free technique for high energy $Q_{\beta\beta}$ isotopes: ⁴⁸Ca: 4.268 MeV
 - ¹⁵⁰ Nd: 3.371 MeV
 - ⁹⁶Zr: 3.356 MeV

SuperNEMO collaboration

SuperNEMO demonstrator

F. Piquemal Sendai 2019

SuperNEMO calorimeter

 Δ E/E :4% at Q_{$\beta\beta$} (8% NEMO3) 440 8" PMT and 150 5" PMT Scintillation light simulation Digitisation of the pulses

SuperNEMO sources

7 kg of ⁸²Se

Radiopurity measure by BiPo detector limits about few tens of $\mu\text{Bq/kg}$ in 208Tl Final radiopurity meausred by the detector itself

Detector is assembly and closed Commissioning in progress, data taking this spring

 $\begin{array}{l} 0\nu\beta\beta;\ T_{1/2}>6\ x\ 10^{24}\ years;\ \langle m_{\nu}\rangle<160-400\ meV\\ \hline Exotic\ 0\nu\beta\beta\ mechanisms\\ 2\nu\beta\beta;\ SSD/HSD\ discrimination\ at\ 5\sigma\ level\\ Probe\ nuclear\ physics\ by\ measuring\ g_A\\ \hline Lorentz\ invariance\ violation\ test\\ \hline Alternative\ isotopes:\ ^{150}Nd\ and\ ^{48}Ca,\ with\ high\ Q_{\beta\beta}\\ \hline 0\nu4\beta;\ for\ ^{150}Nd \end{array}$

- tracko-calo allows to measure the full kinematics
- > High background rejection allows precision measurements with $\beta\beta(2\beta)$
- NEMO3 allows to extract nuclear physics data (HSD vs SSD)
- First limit for quadriple beta decay
- Mesurement of all kinematics parameters: possibility to determine the process in case of signal
- SuperNEMO will start data taking this Spring
- > Presently difficult tp extrapolate tracking detector at high mass but how to believe a $\beta\beta(0\nu)$ signal without identification of electrons ?