

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe

NEWSdm experiment Directional Dark Matter Search with Super-high resolution Nuclear Emulsion

Tatsuhiro NAKA

KMI, Nagoya University on behalf of NEWSdm collaboration

Direction sensitive dark matter with solid detector

- Super-high resolution device using capability of detecting nano-scale track
- Readout technologies for such very short length tracks
- Understanding and rejection of backgrounds

Direction sensitive dark matter with solid detector

<u>This talk</u>

Super-fine grained Nuclear emulsion (Nano Imaging Tracker : NIT)

First detector demonstrated capability of tracking to low-velocity nuclear recoil

New Idea amd on studying

Diamond

Microscope imaging of luminescence due to N-V center in diamond *Phys. Rev. D. 96 035009 (2017)*

- Anisotorpic crystal (e.g., ZnWO4)
- > <u>Carbon nano tube</u>

Carbon nanotube target + gaseous TPC arXiv:1412.8213 [physics.ins-det]

<u>Rock (but not directional search</u>

Crystal defect tracking in Ancient mineral

ightarrow already M or G year exposure

arXiv:1811.06844v1 [astro-ph.CO] 16 Nov 2018

NEWSdm experiment [Nuclear Emulsion for WIMPs Search – directional measurement]

http://news-dm.lngs.infn.it LOI under review by the LNGS science committee

NEWS: Nuclear Emulsions for WIMP Search Letter of Intent (NEWS Collaboration)

Chiba	NEWSdaw
Nagoya	METU Ankara
Bari	LPI RAS Moscow Gyeongsang
GSSI	JINR Dubna
LNGS	SINP MSU Moscow
Napoli	INR Moscow
Roma	Yandex School of Data Analysis

https://arxiv.org/abs/1604.04199

Concept of NEWSdm experiment

Nuclear Emulsion Device

Self-production of Nano Imaging Tracker(NIT)

 Production time : 4-5 hours /batch
 One butch : ~ 100 g (+ 300 g) (there are 2 type machines)
 ⇒ kg scale production is possible using this machine.

Properties of NIT device

Elemental composition of NIT

	Mass fraction	Atomic Fraction
Ag	0.44	0.10
Br	0.32	0.10
I	0.019	0.004
С	0.101	0.214
0	0.074	0.118
Ν	0.027	0.049
Н	0.016	0.410
S, Na + others	~ 0.001	~ 0.001

Intrinsic radioactivity :

	C-14	Ag-110m	K-40	Th-232	U-238
[mBq/kg]	24000	(~400)	35	6	27

- K-40 reduction : 69020 (first type) → 35 mBq/kg
 by KBr → NaBr for AgBr creation and use high deionized gelatin
- Ag-110m : not confirmed yet

 first measured batch : ~ 400 mBq/kg
 recent batch : < 150 mBq/kg
- C-14 : AMS measurement result. Consistent with natural abundance. \rightarrow if replace to synthetic polymer, it will be reduced more than 10⁻³

Intrinsic neutron background (SOURCES + Geant4):

	Emission [/kg/y]	Rate for > 100 nm tracks [/kg/y]
Intrinsic neutron	~ 1.2	~ 0.1

Detail shown in Astropart. Phys. 80 (2016)16-21

Low-velocity ion tracking

Can use ion implantation as calibration source SEM image of low-velocity Carbon ion (100keV)

- Mono energy (± 0.1 keV)
- Good direction uniformity (<10 mrad)
- Now, C from CO₂ Ar, Kr

(various kind ions are also possible)

AgBr crystal has good sensitivity about Carbon (100 % consistent sensitivity)

Readout technologies

Event selection • Phase contrast imaging ٠

One more machine will be constructed

Toho U.

Nagoya

Machine for device quality check

- **Event selection**
- Plasmon analysis

x 2

Optical microscope system and analysis flow

Standard optical microscope scanning [on going]

Current Speed : ~30 g/y

- Roughly event selection with high speed
- On-line event analysis

<u>~ 100 g/month scale (~ kg/y)</u>

~ kg /month scale (~ 10 kg/y)

Phase contrast imaging [under studying] [will be newly installed] 10⁷ events/month 10^5 events/month Phase contrast Super-resolution : ~10 nm imaging Spectrum analysis Contaminated dust Machine learning discrimination Yandex@Russia, Napoli To be constructed soon

LSPR analysis

Further new analysis [under studying]

~10^3 events/month

- 3D super-resolution analysis with plasmonics
- \succ Destructive analysis using oxidation method
- Expansion method \succ

Cutting-edge technologies will be installed

Sub-micron length track readout capability

<u>K. Kimura and T. Naka, Nucl. Inst. Meth. A 680 (2012) 12-17</u> <u>T. Katsuragawa et al, JINST 12 T04002 (2017)</u>

⇒ > ~ 190 nm

Energy threshold > ~ 60 keV (eff. ~ 10 % ⇒ to be improve by upgrade optical condition)

Demonstration of direction sensitive nuclear recoil detection due to 14.8 MeV neutrons

Mostly detected target was Br recoil [< 200 keV] \rightarrow difference condition from current one Now on studying CNO recoil demonstration due to 565-700 keV (Li-p nuclear fission reaction)

	Main source	Technologies	Expected rejection power or event rate	
Physical BG				
Electrons	C-14 β Environment gamma	Crystal temperature dependence (<i>M. Kimura et al., NIM A 845 (2017) 373</i>) Crystal sensitivity control Image and plasmonic analysis	<pre>(> 10⁶ or more rejection power (< O(1) /kg/day)) *now on studying</pre>	
		Synthetic Polymer	> 10 ³ or more	
Neutron	Intrinsic (α, n)	-	~ 3 x 10 ⁻⁴ /kg/day or less Astropart. Phys. 80 (2016)16-21	
	Environment	Water shield	< 1E-4/kg/day	
Cosmic-ray	Recoiled nuclei	Coincidence with MIP sensitive emulsion	*on studying using simulation	
	Spallation neutron	(under studying with simulation)	(~O(10⁻⁴)/kg/day * now on study)	
Nonphysical BG				
Contaminated dust	(under studying)	Clean room Phase contrast imaging Plasmonic analysis and image processing Machine learning Chemical treatment	Under studying (at least > 10 ⁶ or more, in principle it should not be background)	

Further signal discrimination from backgrounds

Such new analysis studies are now on going

15

Super-resolution microscopy using LSPR information toward lower-threshold tracking

Electron microscope image

40

30

20

Polarization light dependence

Shift of barycenter is important information for nano-scale structure

Dark matter sensitivity

Underground laboratory at LNGS

Device Production facility

New production machine

Motivation of New Underground facility

- Device self-production in underground
- Device handling in clean room
- Chemical development

Discussion started from 2017, and construction from beginning of 2018

New Underground emulsion facility

Feb. 2018 ~ : started construction and commissioning of the production machine at Nagoya (⇒ transported to LNGS from Sep. 2018)
Feb. 2019 ~ : Started test production first time at underground
+ clean room and other infrastructure are on constructing

Up to April : overall confirmation of underground emulsion facility with clean room

First production in LNGS succeeded !!

Equatorial telescope for directional search

Source	Rate [/10kg/y]
Environmental γ-rays	(2.0 +- 0.2) x 10 ⁴
Environmental neutrons	O(10 ⁻²)
Cosmogenic neutrons	1.4 +- 0.1 ²⁰

Conclusion

- NEWSdm project is for direction-sensitive dark matter search with super-resolution nuclear emulsions as solid detector
- Device production and readout system demonstration have been done, and optimization and overall system are now on constructing and commissioning
- New underground facility with device production machine and clean room is now on constructing, and it will be ready around June, 2019.
- **U** We will do underground experiment test there, and go forward for larger scale directional dark matter search

Back up

Detector Application

[Scintillation light emission]

- ✓ High emission efficiency
 - → possibility as scintillator
- ✓ Study for fundamental mechanism of AgBr nano crystal

T. Shiraishi, H. Ichiki, TN al., accepted (2019)

low-velocity heavy particle detector

- ✓ Exotic heavy low-velocity particle (e.g., monopole)
- ✓ Medical therapy
- ✓ Energy loss mechanism

[Neutron detector]

- Environment neutron measurement with direction information
- ✓ Low-energy (sub-MeV, UCN) neutron detector

NEWSdm Application

Potential of Directional Sensitive Search

