Asymmetric Dark Matter

Revealing the history of the universe with underground particle and nuclear research 2019 (3/8/2019)

Masahiro Ibe (ICRR)

🗸 🛛 Baryon-DM coincidence Problem

DM and Baryon make up 27% and 4% of total energy density of the Universe.

 $\Omega_{DM} h^2 \sim 0.14$ $\Omega_B h^2 \sim 0.022$

(Planck 2018: $\Omega_X = \rho_X / 3 M_{PL^2} H_{0^2}$, $H_0 = 100h \text{ km/s/Mpc}$, $h \sim 0.7$)

Baryon-DM coincidence ?

$$\Omega_{DM}:\Omega_b \sim 5:1$$

close with each other...

ex) neutrino-DM : Ω_{DM} : Ω_{v} ($\Sigma m_{v} = 0.06 eV$) = 200 : 1

Is this a serious problem ?

🗸 🛛 Baryon-DM coincidence Problem

If it were not for Baryogenesis...

✓ DM mass density can be explained by the WIMP mechanism :

$$\boldsymbol{\Omega}_{\text{DM}} \propto \boldsymbol{m}_{\text{DM}} \boldsymbol{n}_{\text{DM}} \simeq 0.1 \times \left(\frac{10^{-9} \, \text{GeV}^{-2}}{\langle \sigma v \rangle} \right)$$

 \rightarrow the observed density is explained by choosing appropriate mass & couplings

✓ The baryon density is too low due to its large annihilation cross section :

$$\frac{\overline{p}}{p} \frac{\pi}{n} \qquad \langle \sigma v \rangle \sim \frac{4\pi}{m_n^2} \sim 10 \,\mathrm{GeV}^{-2}$$

 $\rightarrow \Omega_{DM}: \Omega_b(no-asymmetry) = 1:10^{-10}$

The observed baryon density is provided by the baryon asymmetry.

```
\Omega_b (with asymmetry) = 0.02 (\eta_B/10^{-9})
```

```
\eta_B = (n_B - n_{\overline{B}})/n_{\gamma}
```

Baryon-DM coincidence = conspiracy between n_{DM} **and Baryogenesis** ?

🗸 🛛 Baryon-DM coincidence Problem

Answers?

✓ Just a coincidence , $\Omega_{DM}/\Omega_B \sim 5$ is not a big deal.

→ Keep looking for conventional *WIMPs* !

Anthropic requirement ?

For $\Omega_B / \Omega_{DM} < 10^{-(2-4)}$, no disk fragmentation in the galaxies, which makes the star formation rate very low...

['06 Tegmark, Aguirre, Rees, Wilczek]

(These arguments depend on which parameters we fix.)

→ The *asymmetric dark matter* (*ADM*) provides an interesting insight !

Asymmetric Dark Matter (ADM)

[1990 Barr Chivukula, Farhi , 1992 D. B. Kaplan, 2009 D. E. Kaplan, Luty and Zurek]

Basic Idea

Matter-anti-matter asymmetries in the SM/DM sectors

 $\eta_B = (n_B - n_{\overline{B}})/n_{\gamma} \qquad \eta_{DM} = (n_{DM} - n_{\overline{DM}})/n_{\gamma}$

are generated from the common origin so that $\eta_{DM}/\eta_B = O(1)$.

The mass densities of the baryon and dark matter are proportional to the asymmetries

 Ω_b (with asymmetry) $\propto~m_{
m N}\,\eta_{
m B}$

 Ω_{DM} (with asymmetry) $\propto m_{DM} \eta_{DM}$

 $\rightarrow \Omega_{DM}/\Omega_B = (m_{DM}/m_B)(\eta_{DM}/\eta_B)$

The baryon-DM ratio $\Omega_{DM}/\Omega_B \sim 5$ can be achieved for

 $m_{DM} \sim 5 m_B x (\eta_B / \eta_{DM}) \sim O(1) \text{ GeV}$

Asymmetric Dark Matter (ADM)

Two main mechanisms

🗸 Sharing mechanism

SM and **DM** sectors share a primordial asymmetry produced in an arbitrary sector.

🖊 Cogenesis

The asymmetries in the two sectors are produced by the same process.

[Petraki & Volkas 1305.4939 Zurek 1308.0338 for review]

Asymmetric Dark Matter (ADM)

Two main mechanisms

🗸 Sharing mechanism

SM and DM sectors share a primordial asymmetry produced in an arbitrary sector.

In the following, we consider the sharing mechanism.

In the sharing mechanism :

- What is the origin of the asymmetry ?
- How the asymmetries are shared ?
 - \rightarrow there are lots of possibilities...

Asymmetric Dark Matter via Leptogenesis

Thermal Leptogenesis (at the decay of the right-handed neutrino N_R)

$$\mathcal{L}_{N-\mathrm{SM}} = \frac{1}{2} M_R \bar{N}_R \bar{N}_R + y_N H L \bar{N}_R + \mathrm{h.c.}$$

 $(N_R : right-handed neutrino, M_R > 10^{10} GeV)$

Asymmetry in the **SM** sector

= the asymmetry of the **B-L** symmetry (if it is generated **T > O(100)GeV**)

Dark Sector shares the **B-L** symmetry with the **SM** through

$$\mathcal{L}_{B-L \text{ portal}} = \frac{1}{M_*^n} \mathcal{O}_D \mathcal{O}_{\text{SM}} + \text{h.c.}$$

O_{SM}: Neutral (other than B-L) consisting of SM fields.

O_{DM}: Neutral (other than B-L) consisting of DM fields.

The **SM** and the **DM** sectors are thermally connected at the high temperature $T > T_D \sim M_* (M_*/M_{PL})^{1/(2n-1)}$

ADM scenario is achieved by **Thermal Leptogenesis** for $M_R > T_D$.

Asymmetric Dark Matter via Leptogenesis

$T \sim M_R$	Leptogenesis					
	B-L asymmetry in SM + Dark sector					
	$\eta_{SM} = A_{SM}$	η_{B-L} $\eta_{DM} = A_{DM} \eta_{B-L}$	$(A_{SM} + A_{DM} = 1)$			
$T_D \sim M^* (M^*/M_{PL})^{1/(2n-1)}$]			
	η _{SM} = λ	$\eta_{DM} = A_{DM} \eta_{B-L}$				
T _{EW} ~100GeV						
	$\boldsymbol{\eta}_B = \boldsymbol{A}_B \boldsymbol{\eta}_{B-L}$	$\eta_L = A_L \eta_{B-L}$	$\eta_{DM} = A_{DM} \eta_{B-L}$			
	(A _B /A	। _{SM} = 30/97)				
$n_B = \eta_B$	$n_{\gamma} \rightarrow n_{DM} = (A_{DM} / \Omega_{DM})$ $\Omega_{DM} = (m_{DM} / m_{p}) (A_{DM})$ $m_{DM} = 5 m_{p} (30/97)$	A _B) n _B = (A _{DM} /A _{SM}) (A _{DM} /A _{SM}) (A _{SM} /A _B) Ω _B) <u>(A_{SM}/A_{DM}) x</u> (Ω _{DM} /	А _{SM} /A _B) n _B			
		determined by t	he degrees of freedom			

✓ ADM models require a large annihilation cross section

Lots of possibilities...

- ✓ **SM final state** via heavy mediators (\rightarrow similarity with the **WIMP** models)
- ✓ final states in the dark sector (→ the entropy in the dark sector should be transferred to the SM sector.)

We prefer ADM models in which

 $m_{DM} = O(1) GeV$

is achieved without fine-tuning.

The **ADM** scenario **does not solve** the coincidence problem but provides a new interpretation in terms of the mass ratio $m_{DM}/m_N = O(1)$.

The ultimate solution to the problem is obtained when the mass ratio $m_{DM}/m_N = O(1)$ is explained, which requires higher-energy theory.

At least, $m_{DM} = O(1)$ GeV should not be achieved by fine-tuning to avoid that $\Omega_{DM}/\Omega_B \sim 5$ is realized by fine-tuning.

Composite ADM models are highly motivated !

✓ DM annihilation cross section is large !

Symmetric components annihilates very efficiently !

✓ DM mass can be explained by dynamical transmutation.

Among various possibilities, **ADM** with the **sharing** mechanism through **B-L** connecting operators with **thermal Leptogenesis** is very well motivated !

✓ B-L symmetry is well-motivated in the SM (can be gauged, SO(10) GUT)

✓ Thermal Leptogenesis is very successful for the baryogenesis.

Compositeness is an interesting addition.

- large annihilation cross section
- ✓ m_{DM}=O(1)GeV without fine-tuning
- Models are rather complicated
- ✓ The entropy in the dark sector should be transferred to the SM

Asymmetric Dark Matter and Dark Radiation

What if the final state particle in the dark sector are massless ?

✓ At **T** > **T**_D, the **SM** and the **DM** sectors are in the thermal equilibrium

$$\rho_R = \frac{\pi^2}{30} \left(g_{SM}(T) + g_{DM}(T) \right) T^4$$

(g: the number of the effectively massless degree of freedom $g_{SM}(T) = 106.75$)

✓ Below $T > T_D$, the thermal baths of the **SM** and the **DM** sectors evolve independently.

The temperatures of the two sectors are different at a later time.

Asymmetric Dark Matter and Dark Radiation

The radiation energy after the neutrino decoupling

$$\rho_R = \left(1 + \frac{7}{8}N_{\nu}\left(\frac{T_{\nu}}{T_{\gamma}}\right)^4 + \frac{\bar{g}_{DM}(T_{\nu*})}{2}\left(\frac{g_{DM}(T_D)}{g_{DM}(T_{\nu*})}\right)^{4/3}\left(\frac{g_{SM}(T_{\nu*})}{g_{SM}(T_D)}\right)^{4/3}\left(\frac{T_{\nu}}{T_{\gamma}}\right)^4\right)\rho_{\gamma}$$

 $N_{\nu} = 3.046 \qquad T_{\nu}/T_{\gamma} = (4/11)^{1/3} \qquad g_{SM}(T_D) = 106.75 \qquad g_{SM}(T_{\nu^*}) = 43/4$ $T_{\nu^*} : v \, decoupling \, temperature \, (~3MeV) \qquad \overline{g}_{DM} = g_{DM} \, x \, \{1 \, (B), \, 7/8 \, (F)\}$

$$\Delta N_{\rm eff} = \frac{4\bar{g}_{DM}(T_{\nu*})}{7} \left(\frac{g_{DM}(T_D)}{g_{DM}(T_{\nu*})}\right)^{4/3} \left(\frac{g_{SM}(T_{\nu*})}{g_{SM}(T_D)}\right)^{4/3} > \frac{4\bar{g}_{DM}(T_D)}{7} \left(\frac{g_{SM}(T_{\nu*})}{g_{SM}(T_D)}\right)^{4/3}$$

[see also 1203.5803 Blennow, Martinez, Mena, Redondo, Serra]

 CMB constraints : $\Delta N_{eff} < 0.30 (95\% CL)$ [Planck 2018]

 $g_{DM}(T_D) < 11$

 cf. $SU(N_c) N_F$ -flavor model $g_{DM} = 2 (N_c^2 - 1) + 7/2 N_F N_c$

 Even $N_c = 2 \& N_F = 1$ exceeds the bound !

We need a portal to transfer the entropy in the DM sector to the SM sector for composite ADM models !

Composite Asymmetric Dark Matter with Dark Photon [1805.0687 Kamada, Kobayashi, Nakano MI]

✓ The composite dark sector may have **QED**-like gauge interaction, i.e. **dark QED**.

Dark QED can mix with QED through the kinetic mixing.

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{1}{4}F'_{\mu\nu}F'^{\mu\nu} + \frac{\epsilon}{2}F_{\mu\nu}F'^{\mu\nu} - \frac{\epsilon}{2}F_{\mu\nu}F'^{\mu\nu}$$

$$------ kinetic mixing$$

$$F_{\mu\nu}: QED photon \quad F'_{\mu\nu}: dark QED photon \quad \varepsilon: mixing parameter << 1$$

Assume dark QED photon obtains a mass via Higgs mechanism...

The massive **dark photon** couples to **QED** current with *e* **g***QED*.

The massive dark photon can be a good candidate for the portal interaction !

[1805.0687 Kamada, Kobayashi, Nakano MI]

✓ Mirror Copy of QCD (= dark QCD) with dark QED (SU(2)_L is not copied)

e.g.) Matter content for $N_F = 2$

	$\mathrm{SU}(3)_D$	B-L	$\mathrm{U}(1)_D$	
Q_1	3	q_{B-L}	2/3	
\bar{Q}_1	$\overline{3}$	$-q_{B-L}$	-2/3	
Q_2	3	q_{B-L}	-1/3	
\bar{Q}_2	$\overline{3}$	$-q_{B-L}$	1/3	$(q_{B-L}=1/3)$

Asymmetry Ratio :

 $(A_{SM} / A_{DM}) = 237 / (22N_F) \rightarrow m_{DM} \sim 8.5 \, GeV(2 / N_F)$

[see also 1411.4014 Fukuda, Matsumoto, Mukhopadhyay]

✓ We need at least $N_F > 1$ to allow the *B***-L** portal interaction.

$$\mathcal{L}_{B-L \text{ portal}} = \frac{1}{M_*^n} \mathcal{O}_D \mathcal{O}_{SM} + \text{h.c.}$$

O_{SM}: Neutral (other than B-L) consisting of SM fields. O_{DM}: Neutral (other than B-L) consisting of DM fields.

Composite Asymmetric Dark Matter with Dark Photon [1805.0687 Kamada, Kobayashi, Nakano MI]

Dark QCD exhibits confinement at O(1-10) GeV.

- $\checkmark \text{ Dark Matter} = \text{Dark protons and Dark neutrons } (m_{N'} \sim O(1) \text{ GeV})$ $p' \propto Q_1 Q_1 Q_2, \quad \bar{p}' \propto \bar{Q}_1 \bar{Q}_1 \bar{Q}_2, \quad n' \propto Q_1 Q_2 Q_2, \quad \bar{n}' \propto \bar{Q}_1 \bar{Q}_2 \bar{Q}_2.$
- ✓ **Dark baryons** annihilate into **Dark pions** $(m_{\pi'} = O(100)MeV O(1)GeV)$ $\pi'^0 \propto Q_1 \bar{Q}_1 - Q_2 \bar{Q}_2, \quad \pi'^+ \propto Q_1 \bar{Q}_2, \quad \pi'^- \propto Q_2 \bar{Q}_1$
- ✓ **Dark pions** annihilate/decay into **dark photons** ($m_{\gamma'} < m_{\pi'} < m_{N'}$)

The dark sector ends up with the dark baryonic matter and dark photon due to the asymmetry ! ($\Omega_{p'}$: $\Omega_{n'} \sim 1$: 1)

[1805.0687 Kamada, Kobayashi, Nakano MI]

Dark photons eventually decay into a pair of the electrons or the muons

$$\Gamma_{\gamma'} = N_{\rm ch} \frac{1}{3} \epsilon^2 \alpha m_{\gamma'} \simeq 0.3 \,\mathrm{s}^{-1} \times N_{\rm ch} \left(\frac{\epsilon}{10^{-10}}\right)^2 \left(\frac{m_{\gamma'}}{100 \,\mathrm{MeV}}\right)$$

Lifetime of O(1) sec $\leftrightarrow \epsilon \sim 10^{-10}$

Constraints on dark photon parameter space

Composite Asymmetric Dark Matter with Dark Photon [1805.0687 Kamada, Kobayashi, Nakano MI]

Dark Matter direct detection via the dark photon exchange.

Region above the red line are excluded by Panda-X (**54 ton**×**day** exposure) for $m_{DM} = 8.5 GeV$ (roughly corresponding to $\sigma < 10^{-44} cm^2$)

The ADM model with a dark photon can be tested by the direct detection experiments.

✓ Dark Sector Shares *B-L* symmetry with the *SM* via

$$\mathcal{L}_{B-L \text{ portal}} = \frac{1}{M_*^n} \mathcal{O}_D \mathcal{O}_{\text{SM}} + \text{h.c.}$$
$$= \frac{1}{M_*^3} (\underline{\bar{Q}_1 \bar{Q}_2 \bar{Q}_2}) L H$$
Dark neutron operator

Through this operator, the dark nucleon decays into anti-neutrinos !

 $N' \to \pi' + \overline{\nu}$

$$\tau \sim 10^{24} \sec \left(\frac{M_*}{10^9 \,\text{GeV}}\right)^6 \left(\frac{10 \,\text{GeV}}{m_{\text{DM}}}\right)^5$$

[1003.5662 Feldstein, Fitzpatrick] [1411.4014 Fukuda, Matsumoto, Mukhopadhyay]

Composite ADM leads to a monochromatic anti-neutrino signal !

Constraints on the v- flux from DM decay

full-sky averaged neutrino flux

SK, 1679.6 live days, $\Delta \theta_{GC} = 30^{\circ}$

['09 Covi, Grefe, Ibarra, Tran]

 $\tau_{DM}(DM \rightarrow X + v) > 10^{23} \text{ sec for } m_{DM} \sim 10 \text{ GeV}.$ (SK 90%CL constraints on the neutrino flux)

→ M∗≳ 10^{8.5} GeV

In the ADM models, neutrino detectors sensitive to O(100)MeV - O(1)GeV play important roles !

Constraints from CMB (work in progress with Kobayashi, Nagai Nakano)

Dark neutron - Anti dark neutron oscillation

The portal operator

$$\mathcal{L}_{B-L \text{ portal}} = \frac{1}{M_*^3} (\bar{Q}_1 \bar{Q}_2 \bar{Q}_2) LH$$

is generated by the seesaw mechanism:

Some fraction of dark neutron has been converted to anti-dark neutron!

[see also 1202.0283 Tulin, Yu, Zurek, 1402.42500 Hardy, Lasenby, Unwin]

✓ Dark matter can annihilate in the present universe !

Effective cross section : $f_{anti} \sigma v$ $f_{anti} \sim \min[1, \Delta m_{n'}/H]$ $\sigma v \sim [\sigma v]_{nucleon} \times (m_N/m_{N'})^2$ very large !Typical electron/positron energy : $\langle E_e \rangle = O(1)GeV$

Constraints from indirect dark matter searches (work in progress)!

✓ e⁺ + e⁻ leads to the inverse Compton & synchrotron radiation

 \rightarrow constraints on the galactic **y**-ray flux by Fermi-LAT

 $f_{anti}(z=1) \sigma v \leq 10^{-26} cm^3/s$ [1604.02263 Ando, Ishiwata]

✓ e⁺ + e⁻ injection distorts CMB

 $f_{anti}(z \sim 600) \sigma v \leq 10^{-26} cm^3/s$ [Planck 2018]

UV completion of the Composite Asymmetric Dark Matter

The dark photon model requires a tiny parameter $\boldsymbol{\varepsilon}$

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{\epsilon}{2} F_{\mu\nu} F'^{\mu\nu}$$

For **U(1)** x U(1) gauge theory, ε is an arbitrary parameter...

For **non-abelian gauge theory**, the kinetic mixing is forbidden.

Small kinetic mixing can be achieved in the non-abelian GUT theory !

[1811.10232 Kamada, Kobayashi, Kuwahara, Nakano MI]

SM :
$$SU(3)xSU(2)xU(1) \rightarrow SU(5)_{GUT}$$

DM : $SU(3)xU(1) \rightarrow SU(4)_{DGUT}$
 $<\Sigma > = v_5(2,2,2,-3,-3) < \Xi > = v_4(1,1,1,-3)$

	$SU(5)_{\rm GUT}$	$SU(4)_{\rm DGUT}$	$U(1)_{5}$
Ψ_i	10	1	1
Φ_i	$\overline{5}$	1	-3
\overline{N}_i	1	1	5
Q'_U	1	6	0
Q'_D	1	4	5/2
$\overline{Q}'_{\overline{D}}$	1	$\overline{4}$	-5/2

	$SU(5)_{\rm GUT}$	$SU(4)_{\rm DGUT}$	$U(1)_{5}$
H	5	1	2
\sum	24	1	0
H'	1	4	-5/2
[I]	1	15	0

 $U(1)_5 = \text{GUT commuting } B-L$

UV completion of the Composite Asymmetric Dark Matter

Mixing term originates from the higher dimensional operator

$$\mathcal{L}_{\epsilon} = \frac{1}{M_{\rm Pl}^2} \operatorname{tr}(F_{G\,\mu\nu}\Sigma) \operatorname{Tr}(F_D^{\mu\nu}\Xi') \longrightarrow \epsilon \sim v_5 v_4 / M_{PL}^2$$

$$\epsilon \sim 10^{-10} \iff v_4 \sim 10^{10} \, \text{GeV}$$

Portal operators are generated by integrating out the colored Higgs in SU(4)DGUT

$$\mathcal{L}_{\text{Yukawa}} = -Y_D \epsilon^{\alpha\beta\gamma\delta} H'_{\alpha} Q'_{U[\beta\gamma]} Q'_{D\delta} - Y_{\overline{D}} H'^{\dagger\alpha} Q'_{U[\alpha\beta]} \overline{Q}'_{\overline{D}}{}^{\beta} - Y_N H'_{\alpha} \overline{Q}'_{\overline{D}}{}^{\alpha} \overline{N} + \text{h.c.}$$

$$\rightarrow \mathcal{L}_{\text{portal}} = \frac{Y_N Y_{\overline{D}}}{\sqrt{2}M_C^2} \epsilon_{abc} (\overline{U}'{}^a \overline{D}'{}^b) (\overline{D}'{}^c \overline{N}) - \frac{Y_N Y_D^*}{\sqrt{2}M_C^2} \epsilon_{abc} (U'^{\dagger a} D'^{\dagger b}) (\overline{D}'{}^c \overline{N}) + \text{h.c.}$$

Portal scale is explained by the dark GUT scale *Mc* ~ *v4* ~ *10*¹⁰*GeV*

SU(5)GUT X SU(4)DGUT provides a good UV completion of the composite ADM!

 $(v_5 \sim 10^{16} \text{GeV} \& v_4 \sim 10^{10} \text{GeV})$

Summary

✓ The **Baryon-DM** coincidence problem can be an important hint for the origin of dark matter.

✓ The Asymmetric Dark Matter scenario can be a good starting point to find a solution to the coincidence problem !

(In the **ADM**, $\Omega_{DM}/\Omega_B \sim 5$ can be interpreted by $m_{DM}/m_N \sim O(1)$)

- The ADM via thermal Leptogenesis is very attractive scenario where the asymmetry in the DM/SM sectors are shared through *B-L* portal.
- The **composite ADM** is well-motivated as it provides the large annihilation cross section & the **DM** mass via dimensional transmutation.
- The *dark photon* portal provides an efficient way to transfer the entropy in the **DM** sector to the **SM** sector.

(A tiny mixing parameter can be achieved in non-abelian extensions)

→ The *dark photon* also provides a high testability of the *ADM* models !

The dark neutron-dark anti-neutron oscillation makes phenomenology of the **ADM** richer !

The ADM is an attractive alternative to the WIMP!

Back up

$$\mathcal{L} = m_1 \bar{Q}_1 Q_1 + m_2 \bar{Q}_2 Q_2$$

✓ The dark nucleon

 $p' \propto Q_1 Q_1 Q_2$, $\bar{p}' \propto \bar{Q}_1 \bar{Q}_1 \bar{Q}_2$, $n' \propto Q_1 Q_2 Q_2$, $\bar{n}' \propto \bar{Q}_1 \bar{Q}_2 \bar{Q}_2$.

$$m_{N'} \simeq m_N \times \frac{\Lambda_{\text{QCD'}}}{\Lambda_{\text{QCD}}} \qquad m_{n'} - m_{p'} \simeq \delta m_{n-p}^{\text{QED}} \times \frac{\Lambda_{\text{QCD'}}}{\Lambda_{\text{QCD}}} \times \alpha_D + \kappa_N (m_1 - m_2)$$
$$\delta m_{n-p}^{\text{QED}} = -0.178^{+0.004}_{-0.064} \,\text{GeV} \quad \kappa_N = 0.95^{+0.08}_{-0.06}$$

✓ The dark pions

$$\pi'^0 \propto Q_1 \bar{Q}_1 - Q_2 \bar{Q}_2, \quad \pi'^+ \propto Q_1 \bar{Q}_2, \quad \pi'^- \propto Q_2 \bar{Q}_1$$

$$m_{\pi'^0}^2 \simeq m_{\pi^0}^2 \times \frac{\Lambda_{\rm QCD'}}{\Lambda_{\rm QCD}} \frac{m_1 + m_2}{m_u + m_d} \qquad m_{\pi'^\pm}^2 \simeq m_{\pi'^0}^2 + \alpha_D \Lambda_{\rm QCD'}^2$$

UV completion of the Composite Asymmetric Dark Matter

Table 2: Charge assignment of fermions and scalars in the minimal $SU(5)_{GUT}$ $SU(4)_{DGUT}$ unified model. The upper rows of the tables show the assignment in $SU(5)_{G^{\dagger}}$ sector while the lower rows show those in $SU(4)_{DGUT}$ sector.

	$SU(5)_{\rm GUT}$	$SU(4)_{\rm DGUT}$	$U(1)_{5}$				
Ψ_i	10	1	1		$SU(5)_{\rm GUT}$	$SU(4)_{\rm DGUT}$	$U(1)_{5}$
Φ_i	$\overline{5}$	1	-3	Н	5	1	2
\overline{N}_i	1	1	5	Σ	24	1	0
Q'_U	1	6	0	H'	1	4	-5/2
Q'_D	1	4	5/2	Ξ'	1	15	0
$\overline{Q}'_{\overline{D}}$	1	$\overline{4}$	-5/2	· • • • • • • • • • • • • • • • • • • •			•

 $SU(4)_{\text{DGUT}}$ is decomposed as $\mathbf{6} \rightarrow \mathbf{3}_{2/3} + \overline{\mathbf{3}}_{-2/3}$:

$$Q'_{U} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & \overline{U}^{'3} & -\overline{U}^{'2} & U'_{1} \\ -\overline{U}^{'3} & 0 & \overline{U}^{'1} & U'_{2} \\ \overline{U}^{'2} & -\overline{U}^{'1} & 0 & U'_{3} \\ -U'_{1} & -U'_{3} & -U'_{3} & 0 \end{pmatrix}, \qquad Q'_{D} = \begin{pmatrix} D'_{1} \\ D'_{2} \\ D'_{3} \\ \overline{E}^{'} \end{pmatrix}, \qquad \overline{Q}'_{\overline{D}} = \begin{pmatrix} \overline{D}^{'1} \\ \overline{D}^{'2} \\ \overline{D}^{'3} \\ \overline{E}^{'} \end{pmatrix}.$$

Portal operators are generated by integrating out the colored Higgs in SU(4) DGUT

$$\mathcal{L}_{\text{Yukawa}} = -Y_D \epsilon^{\alpha\beta\gamma\delta} H'_{\alpha} Q'_{U[\beta\gamma]} Q'_{D\delta} - Y_{\overline{D}} H'^{\dagger\alpha} Q'_{U[\alpha\beta]} \overline{Q}'_{\overline{D}}{}^{\beta} - Y_N H'_{\alpha} \overline{Q}'_{\overline{D}}{}^{\alpha} \overline{N} + \text{h.c.},$$

$$\rightarrow \quad \mathcal{L}_{\text{portal}} = \frac{Y_N Y_{\overline{D}}}{\sqrt{2}M_C^2} \epsilon_{abc} (\overline{U}'^a \overline{D}'^b) (\overline{D}'^c \overline{N}) - \frac{Y_N Y_D^*}{\sqrt{2}M_C^2} \epsilon_{abc} (U'^{\dagger a} D'^{\dagger b}) (\overline{D}'^c \overline{N}) + \text{h.c.}$$

UV completion of the Composite Asymmetric Dark Matter

Table 2: Charge assignment of fermions and scalars in the minimal $SU(5)_{GUT}$ $SU(4)_{DGUT}$ unified model. The upper rows of the tables show the assignment in $SU(5)_{G^{\dagger}}$ sector while the lower rows show those in $SU(4)_{DGUT}$ sector.

	$SU(5)_{\rm GUT}$	$SU(4)_{\rm DGUT}$	$U(1)_{5}$				
Ψ_i	10	1	1		$SU(5)_{\rm GUT}$	$SU(4)_{\rm DGUT}$	$U(1)_{5}$
Φ_i	$\overline{5}$	1	-3	Н	5	1	2
\overline{N}_i	1	1	5	Σ	24	1	0
Q'_U	1	6	0	H'	1	4	-5/2
Q'_D	1	4	5/2	Ξ'	1	15	0
$\overline{Q}'_{\overline{D}}$	1	$\overline{4}$	-5/2	· • • • • • • • • • • • • • • • • • • •			•

 $SU(4)_{\text{DGUT}}$ is decomposed as $\mathbf{6} \rightarrow \mathbf{3}_{2/3} + \overline{\mathbf{3}}_{-2/3}$:

$$Q'_{U} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & \overline{U}^{'3} & -\overline{U}^{'2} & U'_{1} \\ -\overline{U}^{'3} & 0 & \overline{U}^{'1} & U'_{2} \\ \overline{U}^{'2} & -\overline{U}^{'1} & 0 & U'_{3} \\ -U'_{1} & -U'_{3} & -U'_{3} & 0 \end{pmatrix}, \qquad Q'_{D} = \begin{pmatrix} D'_{1} \\ D'_{2} \\ D'_{3} \\ \overline{E}^{'} \end{pmatrix}, \qquad \overline{Q}'_{\overline{D}} = \begin{pmatrix} \overline{D}^{'1} \\ \overline{D}^{'2} \\ \overline{D}^{'3} \\ \overline{E}^{'} \end{pmatrix}.$$

Portal operators are generated by integrating out the colored Higgs in SU(4) DGUT

$$\mathcal{L}_{\text{Yukawa}} = -Y_D \epsilon^{\alpha\beta\gamma\delta} H'_{\alpha} Q'_{U[\beta\gamma]} Q'_{D\delta} - Y_{\overline{D}} H'^{\dagger\alpha} Q'_{U[\alpha\beta]} \overline{Q}'_{\overline{D}}{}^{\beta} - Y_N H'_{\alpha} \overline{Q}'_{\overline{D}}{}^{\alpha} \overline{N} + \text{h.c.},$$

$$\rightarrow \quad \mathcal{L}_{\text{portal}} = \frac{Y_N Y_{\overline{D}}}{\sqrt{2}M_C^2} \epsilon_{abc} (\overline{U}'^a \overline{D}'^b) (\overline{D}'^c \overline{N}) - \frac{Y_N Y_D^*}{\sqrt{2}M_C^2} \epsilon_{abc} (U'^{\dagger a} D'^{\dagger b}) (\overline{D}'^c \overline{N}) + \text{h.c.}$$

✓ DM capture at the SUN

$$\frac{dN}{dt} = \Gamma_{\text{capt}} - 2\Gamma_{\text{ann}} \qquad \Gamma_{\text{ann}} = \frac{1}{2} \int d^3x \, n^2(\vec{x}) \, \langle \sigma v \rangle = \frac{1}{2} C_{\text{ann}} N^2$$
$$\rightarrow N_{DM} = \sqrt{\frac{\Gamma_{\text{capt}}}{C_{\text{ann}}}} \tanh\left(t\sqrt{\Gamma_{\text{capt}}C_{\text{ann}}}\right)$$

✓ Capture rate at the SUN for *m_{DM}* ≤ 10 GeV

 $\Gamma_{capt} \sim 10^{30}/\text{sec x} (\sigma_{SI}/\text{pb})$ [e.g. Cirelli, PPPC v] σ_{SI} : spin-independent DM-nucelon cross section

The total DM mass in the SUN for non-annihilating DM

 $M_{DM} \sim m_{DM} x \Gamma_{capt} x (5 x 10^9 \text{ year})$ ~ 10⁴⁰ GeV ($m_{DM}/10$ GeV) x ($\sigma_{SI}/10^{-44} \text{ cm}^2$) cf. $M_{\odot} \sim 10^{57}$ GeV

For a scalar ADM without annihilation, the ADM captured in the neutron star may form a black hole inside the neutron star !

[1011.2907 McDermott, Yu, Zurek]

DM capture at the SUN

$$\frac{dN}{dt} = \Gamma_{\text{capt}} - 2\Gamma_{\text{ann}} \qquad \Gamma_{\text{ann}} = \frac{1}{2} \int d^3x \, n^2(\vec{x}) \, \langle \sigma v \rangle = \frac{1}{2} C_{\text{ann}} N^2$$
$$\rightarrow N_{DM} = \sqrt{\frac{\Gamma_{\text{capt}}}{C_{\text{ann}}}} \tanh\left(t\sqrt{\Gamma_{\text{capt}}C_{\text{ann}}}\right)$$

✓ Capture rate at the SUN for *m_{DM}* ≤ 10 GeV

 $\Gamma_{capt} \sim 10^{30}/\text{sec x} (\sigma_{SI}/\text{pb})$ [e.g. Cirelli, PPPC v] σ_{SI} : spin-independent DM-nucelon cross section

✓ Annihilation rate at the SUN : *Γ_{ann} < Γ_{capt} / 2*

The energy injection from the DM annihilation

 $m_{DM}\Gamma_{ann} < m_{DM}\Gamma_{capt}/2$ ~ 10²³ GeV/sec ($m_{DM}/10$ GeV) x ($\sigma_{SI}/10^{-44}$ cm²)

cf. solar power : ~ 10³⁶ GeV / sec