Development of the pre-supernova neutrinos

Andrzej Odrzywołek

M. Smoluchowski Institute of Physics, Jagiellonian U. in Kraków, Poland

Revealing the history of the universe with underground particle and nuclear research
13:50, Saturday 9 March 2019
Can we see neutrinos from other/distant "regular" stars?

The Sun is excluded from now ...
60's: ν detector on Pluto required to detect flux from stars, due to solar neutrino background (Chiu, H.-Y. Cosmic neutrinos and their detection (1964) NASA-TM-X-51721)

1978, S.E. Woosley already know the numbers:

80's: Bahcal, Neutrino astrophysics: only single page (of 567 total) devoted to distant stars; renormalized CNO ν_e spectrum used to estimate detection (J. Bahcall, Neutrino Astrophysics, §6.5 Fluxes from other stars)

1999: A.O. noticed ν flux of 10^{12} L$_\odot$ for Si burning stage; Presupernova at distance of $d = \sqrt{10^{12}/0.02} = 7 \times 10^6$ AU $\simeq 35$ parsecs could outshine the Sun in neutrinos. Unfortunately, no such a massive star exists!

2000: M. Misiaszek point out: this is thermal emission ($\nu\bar{\nu}$ pairs), i.e., ~ 0.5 of the above flux is $\bar{\nu}_e$. Use inverse β decay $p + \bar{\nu}_e \rightarrow n + e^+$ to catch them! But is the neutrino energy large enough? How to capture neutrons in ν detector (considered NaCl, "wet salt solution" . . .)?

2003: pair-annihilation $e^- + e^+ \rightarrow \nu_x + \bar{\nu}_x$ identified as main $\bar{\nu}_e$ source; energy spectrum estimated via MonteCarlo simulation $\langle E_\nu \rangle \sim 4$ kT ~ 2 MeV; Gigaton detector required to get Galaxy coverage (OMK, Astroparticle Physics 21, 303 (2004))

A&A community sceptic: "absolutely undetectable" (S. E. Woosley, priv. comm.) but experimental physicists excited: could we really forecast supernova?

Early thoughts

- 60's: ν detector on Pluto required to detect flux from stars, due to solar neutrino background (Chiu, H.-Y. Cosmic neutrinos and their detection (1964) NASA-TM-X-51721)

- 1978, S.E. Woosley already know the numbers:

<table>
<thead>
<tr>
<th>Burning Stage</th>
<th>Central Temperature (K)</th>
<th>Central Density (g cm$^{-3}$)</th>
<th>Neutrino Luminosity† (erg s$^{-1}$)</th>
<th>Optical Luminosity (erg s$^{-1}$)</th>
<th>Effective Temperature (K)</th>
<th>Photospheric Radius (cm)</th>
<th>Time Scale (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen</td>
<td>3.4 (7)</td>
<td>5.9 (0)</td>
<td>---</td>
<td>8.1 (37)</td>
<td>3.26 (4)</td>
<td>3.2 (11)</td>
<td>3.9 (14)</td>
</tr>
<tr>
<td></td>
<td>3.7 (7)</td>
<td>3.8 (0)</td>
<td>---</td>
<td>3.1 (38)</td>
<td>3.98 (4)</td>
<td>4.2 (11)</td>
<td>2.3 (14)</td>
</tr>
<tr>
<td>Helium</td>
<td>1.6 (8)</td>
<td>1.3 (3)</td>
<td>3.9 (33)</td>
<td>2.3 (38)</td>
<td>1.59 (4)</td>
<td>2.2 (12)</td>
<td>4.2 (13)</td>
</tr>
<tr>
<td></td>
<td>1.8 (8)</td>
<td>6.2 (2)</td>
<td>7.3 (34)</td>
<td>9.5 (38)</td>
<td>1.58 (4)</td>
<td>4.7 (12)</td>
<td>2.1 (13)</td>
</tr>
<tr>
<td>Carbon</td>
<td>6.2 (8)</td>
<td>1.7 (5)</td>
<td>3.4 (38)</td>
<td>3.3 (38)</td>
<td>4.26 (3)</td>
<td>3.7 (13)</td>
<td>2.0 (11)</td>
</tr>
<tr>
<td></td>
<td>7.2 (8)</td>
<td>6.4 (5)</td>
<td>1.0 (40)</td>
<td>1.2 (39)</td>
<td>4.36 (3)</td>
<td>6.7 (13)</td>
<td>5.2 (9)</td>
</tr>
<tr>
<td>Neon</td>
<td>1.3 (9)</td>
<td>1.6 (7)</td>
<td>6.7 (41)</td>
<td>3.7 (38)</td>
<td>4.28 (3)</td>
<td>3.9 (13)</td>
<td>2.2 (8)</td>
</tr>
<tr>
<td></td>
<td>1.4 (9)</td>
<td>3.7 (6)</td>
<td>7.8 (42)</td>
<td>1.2 (39)</td>
<td>4.36 (3)</td>
<td>6.7 (13)</td>
<td>3.9 (7)</td>
</tr>
<tr>
<td>Oxygen</td>
<td>1.9 (9)</td>
<td>9.7 (6)</td>
<td>7.9 (42)</td>
<td>3.7 (38)</td>
<td>4.28 (3)</td>
<td>3.9 (13)</td>
<td>5.5 (7)</td>
</tr>
<tr>
<td></td>
<td>1.8 (9)</td>
<td>1.3 (7)</td>
<td>2.3 (43)</td>
<td>1.2 (39)</td>
<td>4.36 (3)</td>
<td>6.7 (13)</td>
<td>1.6 (7)</td>
</tr>
<tr>
<td>Silicon</td>
<td>3.1 (9)</td>
<td>2.3 (8)</td>
<td>3.4 (44)</td>
<td>3.7 (38)</td>
<td>4.28 (3)</td>
<td>3.9 (13)</td>
<td>5.2 (5)</td>
</tr>
<tr>
<td></td>
<td>3.4 (9)</td>
<td>1.1 (8)</td>
<td>3.8 (45)</td>
<td>1.2 (39)</td>
<td>4.36 (3)</td>
<td>6.7 (13)</td>
<td>1.2 (5)</td>
</tr>
<tr>
<td>Collapse</td>
<td>8.3 (9)</td>
<td>6.0 (9)</td>
<td>6.8 (48)</td>
<td>3.7 (38)</td>
<td>4.28 (3)</td>
<td>3.9 (13)</td>
<td>3.0 (-1)</td>
</tr>
<tr>
<td></td>
<td>8.3 (9)</td>
<td>3.5 (9)</td>
<td>8.1 (48)</td>
<td>1.2 (39)</td>
<td>4.36 (3)</td>
<td>6.7 (13)</td>
<td>3.5 (-1)</td>
</tr>
</tbody>
</table>

†All physical parameters refer to conditions just after the core ignition of each fuel, except the time scale which is the period between successive ignitions. The value for the 15 M_\odot star is listed first in each case.

†Excluding neutrino losses during hydrogen burning.
Early thouhts

- 60's: ν detector on Pluto required to detect flux from stars, due to solar neutrino background (Chiu, H.-Y. Cosmic neutrinos and their detection (1964) NASA-TM-X-51721)

- 1978, S.E. Woosley already know the numbers:

- 80's: Bahcal, *Neutrino astrophysics*: only single page (of 567 total) devoted to distant stars; renormalized CNO ν_e spectrum used to estimate detection (J. Bahcall, Neutrino Astrophysics, §6.5 Fluxes from other stars)

- 1999: A.O. noticed ν flux of 10^{12} L$_{\odot}$ for Si burning stage; Presupernova at distance of $d = \sqrt{10^{12}/0.02} = 7 \times 10^6$ AU $\simeq 35$ parsecs could outshine the Sun in neutrinos. Unfortunately, no such a massive star exists!

- 2000: M. Misiaszek point out: this is thermal emission ($\nu\bar{\nu}$ pairs), i.e., ~ 0.5 of the above flux is $\bar{\nu}_e$. Use inverse β decay $p + \bar{\nu}_e \rightarrow n + e^+$ to catch them! But is the neutrino energy large enough? How to capture neutrons in ν detector (considered NaCl, "wet salt solution" ...)?

- 2003: pair-annihilation $e^- + e^+ \rightarrow \nu_x + \bar{\nu}_x$ identified as main $\bar{\nu}_e$ source; energy spectrum estimated via MonteCarlo simulation $\langle E_\nu \rangle \sim 4$ kT ~ 2 MeV; Gigaton detector required to get Galaxy coverage (OMK, Astroparticle Physics 21, 303 (2004))

- A&A community sceptic: "absolutely undetectable" (S. E. Woosley, priv. comm.) but experimental physicists excited: could we really forecast supernova?

Early thouhts

- 60’s: ν detector on Pluto required to detect flux from stars, due to solar neutrino background (Chiu, H.-Y. Cosmic neutrinos and their detection (1964) NASA-TM-X-51721)
- 1978, S.E. Woosley already know the numbers:
- 80’s: Bahcal, Neutrino astrophysics: only single page (of 567 total) devoted to distant stars; renormalized CNO ν_e spectrum used to estimate detection (J. Bahcall, Neutrino Astrophysics, §6.5 Fluxes from other stars)
- 1999: A.O. noticed ν flux of $10^{12} \, L_\odot$ for Si burning stage; Presupernova at distance of $d = \sqrt{10^{12}/0.02} = 7 \times 10^6 \, \text{AU} \simeq 35$ parsecs could outshine the Sun in neutrinos. Unfortunately, no such a massive star exists!

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Burning stages in the evolution of a 20-M_\odot star</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel</td>
<td>ρ_c (g cm$^{-3}$)</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>5.6(0)</td>
</tr>
<tr>
<td>Helium</td>
<td>9.4(2)</td>
</tr>
<tr>
<td>Carbon</td>
<td>2.7(5)</td>
</tr>
<tr>
<td>Neon</td>
<td>4.0(6)</td>
</tr>
<tr>
<td>Oxygen</td>
<td>6.0(6)</td>
</tr>
<tr>
<td>Silicon</td>
<td>4.9(7)</td>
</tr>
</tbody>
</table>

- 2000: M. Misiaszek point out: this is thermal emission ($\nu\bar{\nu}$ pairs), i.e., ~ 0.5 of the above flux is $\bar{\nu}_e$. Use inverse β decay $p + \bar{\nu}_e \rightarrow n + e^+$ to catch them! But is the neutrino energy large enough? How to capture neutrons in ν detector (considered NaCl, "wet salt solution" ...)?
- 2003: using annihilation $e^- + e^+ \rightarrow \gamma$ identified as main β-source energy...
Early thouhts

- 60's: ν detector on Pluto required to detect flux from stars, due to solar neutrino background (Chiu, H.-Y. Cosmic neutrinos and their detection (1964) NASA-TM-X-51721)

- 1978, S.E. Woosley already know the numbers:

- 80's: Bahcal, Neutrino astrophysics: only single page (of 567 total) devoted to distant stars; renormalized CNO ν_e spectrum used to estimate detection (J. Bahcall, Neutrino Astrophysics, §6.5 Fluxes from other stars)

- 1999: A.O. noticed ν flux of 10^{12} L_\odot for Si burning stage; Presupernova at distance of $d = \sqrt{10^{12}/0.02} = 7 \times 10^6 \text{ AU} \approx 35$ parsecs could outshine the Sun in neutrinos. Unfortunately, no such a massive star exists!

- 2000: M. Misiaszek point out: this is thermal emission ($\nu\bar{\nu}$ pairs), i.e., ~ 0.5 of the above flux is $\bar{\nu}_e$. Use inverse β decay $p + \bar{\nu}_e \rightarrow n + e^+$ to catch them! But is the neutrino energy large enough? How to capture neutrons in ν detector (considered NaCl, "wet salt solution" . . .)?

- 2003: pair-annihilation $e^- + e^+ \rightarrow \nu_x + \bar{\nu}_x$ identified as main $\bar{\nu}_e$ source; energy spectrum estimated via MonteCarlo simulation $\langle E_{\nu} \rangle \sim 4 \text{ kT} \sim 2 \text{ MeV}$; Gigaton detector required to get Galaxy coverage (OMK, Astroparticle Physics 21, 303 (2004))

- A&A community sceptic: "absolutely undetectable" (S. E. Woosley, priv. comm.) but experimental physicists excited: could we really forecast supernova?

Early thouhts

- 60's: ν detector on Pluto required to detect flux from stars, due to solar neutrino background (Chiu, H.-Y. Cosmic neutrinos and their detection (1964) NASA-TM-X-51721)
- 1978, S.E. Woosley already know the numbers:
- 80’s: Bahcal, Neutrino astrophysics: only single page (of 567 total) devoted to distant stars; renormalized CNO ν_e spectrum used to estimate detection (J. Bahcall, Neutrino Astrophysics, §6.5 Fluxes from other stars)
- 1999: A.O. noticed ν flux of 10^{12} L_\odot for Si burning stage; Presupernova at distance of $d = \sqrt{10^{12}/0.02} = 7 \times 10^6$ AU $\simeq 35$ parsecs could outshine the Sun in neutrinos. Unfortunately, no such a massive star exists!
- 2000: M. Misiaszek point out: this is thermal emission ($\nu\bar{\nu}$ pairs), i.e., ~ 0.5 of the above flux is $\bar{\nu}_e$. Use inverse β decay $p + \bar{\nu}_e \rightarrow n + e^+$ to catch them! But is the neutrino energy large enough? How to capture neutrons in ν detector (considered NaCl, "wet salt solution" ...)?
- 2003: pair-annihilation $e^- + e^+ \rightarrow \nu_x + \bar{\nu}_x$ identified as main $\bar{\nu}_e$ source; energy spectrum estimated via MonteCarlo simulation $\langle E_\nu \rangle \sim 4kT \simeq 2$ MeV; Gigaton detector required to get Galaxy coverage (OMK, Astroparticle Physics 21, 303 (2004))
- A&A community sceptic: "absolutely undetectable" (S. E. Woosley, priv. comm.)
- but experimental physicists excited: could we really forecast supernova?
Early thouhts

- 60's: \(\nu\) detector on Pluto required to detect flux from stars, due to solar neutrino background (Chiu, H.-Y. Cosmic neutrinos and their detection (1964) NASA-TM-X-51721)
- 1978, S.E. Woosley already know the numbers:
- 80's: Bahcal, Neutrino astrophysics: only single page (of 567 total) devoted to distant stars; renormalized CNO \(\nu_e\) spectrum used to estimate detection (J. Bahcall, Neutrino Astrophysics, §6.5 Fluxes from other stars)
- 1999: A.O. noticed \(\nu\) flux of \(10^{12}\) L\(\odot\) for Si burning stage; Presupernova at distance of \(d = \sqrt{10^{12}/0.02} = 7 \times 10^6\) AU \(\simeq 35\) parsecs could outshine the Sun in neutrinos. Unfortunately, no such a massive star exists!
- 2000: M. Misiaszek point out: this is thermal emission (\(\nu\bar{\nu}\) pairs), i.e., \(\sim 0.5\) of the above flux is \(\bar{\nu}_e\). Use inverse \(\beta\) decay \(p + \bar{\nu}_e \rightarrow n + e^+\) to catch them! But is the neutrino energy large enough? How to capture neutrons in \(\nu\) detector (considered NaCl, "wet salt solution" . . .)?
- 2003: pair-annihilation \(e^- + e^+ \rightarrow \nu_x + \bar{\nu}_x\) identified as main \(\bar{\nu}_e\) source; energy spectrum estimated via MonteCarlo simulation \(\langle E_{\nu}\rangle \sim 4\) kT \(\simeq 2\) MeV; Gigaton detector required to get Galaxy coverage (OMK, Astroparticle Physics 21, 303 (2004))
- A&A community sceptic: ,,absolutely undetectable” (S. E. Woosley, priv. comm.) but experimental physicists excited: could we really forecast supernova?
Early thouhts

- 60's: ν detector on Pluto required to detect flux from stars, due to solar neutrino background (Chiu, H.-Y. Cosmic neutrinos and their detection (1964) NASA-TM-X-51721)

- 1978, S.E. Woosley already know the numbers:

- 80's: Bahcal, *Neutrino astrophysics*: only single page (of 567 total) devoted to distant stars; renormalized CNO ν_e spectrum used to estimate detection (J. Bahcall, *Neutrino Astrophysics*, §6.5 Fluxes from other stars)

- 1999: A.O. noticed ν flux of $10^{12} \, L_\odot$ for Si burning stage; Presupernova at distance of $d = \sqrt{10^{12}/0.02} = 7 \times 10^6 \, AU \simeq 35$ parsecs could outshine the Sun in neutrinos. Unfortunately, no such a massive star exists!

- 2000: M. Misiaszek point out: this is thermal emission ($\nu\bar{\nu}$ pairs), i.e., ~ 0.5 of the above flux is $\bar{\nu}_e$. Use inverse β decay $p + \bar{\nu}_e \rightarrow n + e^+$ to catch them! But is the neutrino energy large enough? How to capture neutrons in ν detector (considered NaCl, "wet salt solution")

- 2003: pair-annihilation $e^- + e^+ \rightarrow \nu_x + \bar{\nu}_x$ identified as main $\bar{\nu}_e$ source; energy spectrum estimated via Monte Carlo simulation $\langle E_\nu \rangle \sim 4 \, kT \sim 2 \, MeV$; Gigaton detector required to get Galaxy coverage (OMK, Astroparticle Physics 21, 303 (2004))

- A&A community sceptic: "absolutely undetectable" (S. E. Woosley, priv. comm.) but experimental physicists excited: could we really forecast supernova?

- neutrino spectra: from one-zone (central single-point: \(kT = 0.32, \mu = 0.85\) MeV) to stellar volume integration In: J. R.Wilkes, editor, NNN06, Volume 944 of AIP Conf. Series, 109–118, (2007).
- nuclear neutronization: \(\nu_e\) production/detection channel (Workshop Towards Neutrino Technologies, Trieste, Italy, 2009).
10 years of progress (theory side)

- Neutrino spectra: from one-zone (central single-point: $kT = 0.32, \mu = 0.85$ MeV) to stellar volume integration In: J. R. Wilkes, editor, NNN06, Volume 944 of AIP Conf. Series, 109–118, (2007).

- Pair neutrino "light" curves (from piecewise-const to time-integration)

- Nuclear neutronization: ν_e production & detection channel (Workshop Towards Neutrino Technologies, Trieste, Italy, 2009).

- Other thermal production channels (photo, plasma, deexcitation)

- Effects of neutrino oscillations

- Hydro O/Si burn (last 150 sec)

- Modern stellar evolution codes [see next talk] vs. current O/Ne/Mg envelope treatment

- ONeMg vs Si-burning pre-supernovae
 Kato et. al. (2016-2017)

- Consistent post-processing of MESA stellar models with β^\pm processes
 Kelly Patton et. al. (2017)
10 years of progress (theory side)

- neutrino spectra: from one-zone (central single-point: \(kT = 0.32, \mu = 0.85 \) MeV) to stellar volume integration In: J. R. Wilkes, editor, NNN06, Volume 944 of AIP Conf. Series, 109–118, (2007).

- pair neutrino “light’ curves (from piecewise-const to time-integration)

- nuclear neutronization: \(\nu_e \) production&detection channel (Workshop Towards Neutrino Technologies, Trieste, Italy, 2009).

10 years of progress (theory side)

- neutrino spectra: from one-zone (central single-point: $kT = 0.32, \mu = 0.85$ MeV) to stellar volume integration In: J. R. Wilkes, editor, NNN06, Volume 944 of AIP Conf. Series, 109–118, (2007).
- nuclear neutronization: ν_e production&detection channel (Workshop Towards Neutrino Technologies, Trieste, Italy, 2009).

![Graph of Ye (25 solar masses star)](image)

neutrino spectra: from one-zone (central single-point: \(kT = 0.32, \mu = 0.85\) MeV) to stellar volume integration In: J. R. Wilkes, editor, NNN06, Volume 944 of AIP Conf. Series, 109–118, (2007).

nuclear neutronization: \(\nu_e\) production&detection channel (Workshop Towards Neutrino Technologies, Trieste, Italy, 2009).

modern stellar evolution codes [see next talk] versus past pre-supernova concern

ONeMg vs Si-burning pre-supernovae Kato et. al. (2016-2017)

consistent post-processing of MESA stellar models with \(\beta^\pm\) processes Kelly Patton et. al. (2017)
10 years of progress (theory side)

- neutrino spectra: from one-zone (central single-point: $kT = 0.32, \mu = 0.85$ MeV) to stellar volume integration In: J. R. Wilkes, editor, NNN06, Volume 944 of AIP Conf. Series, 109–118, (2007).
- nuclear neutronization: ν_e production&detection channel (Workshop Towards Neutrino Technologies, Trieste, Italy, 2009).

![Electron neutrino luminosity (s12 model)](image1)
![Electron anti-neutrino luminosity (s12 model)](image2)

- ONeMg vs Si-burning pre-supernovae Kato et al. (2016-2017)
10 years of progress (theory side)

- neutrino spectra: from one-zone (central single-point: \(kT = 0.32, \mu = 0.85\) MeV) to stellar volume integration In: J. R. Wilkes, editor, NNN06, Volume 944 of AIP Conf. Series, 109–118, (2007).
- pair neutrino "light' curves (from piecewise-const to time-integration)
- nuclear neutronization: \(\nu_e\) production&detection channel (Workshop Towards Neutrino Technologies, Trieste, Italy, 2009).
10 years of progress (theory side)

- neutrino spectra: from one-zone (central single-point: $kT = 0.32, \mu = 0.85$ MeV) to stellar volume integration In: J. R.Wilkes, editor, NNN06, Volume 944 of AloP Conf. Series, 109–118, (2007).

- nuclear neutronization: ν_e production&detection channel (Workshop Towards Neutrino Technologies, Trieste, Italy, 2009).

- ONeMg vs Si-burning pre-supernovae Kato et. al. (2016-2017)

- consistent post-processing of MESA stellar models with β^\pm processes Kelly Patton et. al. (2017)

neutrino spectra: from one-zone (central single-point: $kT = 0.32$, $\mu = 0.85$ MeV) to stellar volume integration In: J. R.Wilkes, editor, NNN06, Volume 944 of AloP Conf. Series, 109–118, (2007).

nuclear neutronization: ν_e production&detection channel (Workshop Towards Neutrino Technologies, Trieste, Italy, 2009).

modern stellar evolution codes [see next talk] consistent post-processing of MESA stellar models with β^\pm processes Kelly Patton et. al. (2017)

ONeMg vs Si-burning pre-supernovae Kato et. al. (2016-2017)

neutrino spectra: from one-zone (central single-point: $kT = 0.32$, $\mu = 0.85$ MeV) to stellar volume integration In: J. R. Wilkes, editor, NNN06, Volume 944 of AIP Conf. Series, 109–118, (2007).

nuclear neutronization: ν_e production&detection channel (Workshop Towards Neutrino Technologies, Trieste, Italy, 2009).

modern stellar evolution codes [see next talk] consistent post-processing (MESA stellar models with β^\pm processes) Kelly Patton et. al. (2017)
Recent progress (detector side)

- EGADS — Kamiokande with gadolinium (all tests completed with 100% success)
- Super-Kamiokande with Gd$_2$(SO$_4$)$_3$ — SK-Gd starting 2020 [Mark Vagins morning talk]
- DUNE LAr detector [Maury Goodman talk from previous session]
- Hyper-Kamiokande project starting construction next year, operating 2027 [Takatomi Yano talk]
- other low threshold (below ∼ 2 MeV) large detectors: JUNO, Borexino, coherent, DM search . . .

Pre-supernova warning: from sci-fi to reality in 20 years?

Any day now, nearby (d ≪ 1 kpc) Galactic supernova could be observed via neutrinos in full time-extent, starting from Si burning week before collapse until late neutron star colling or black hole formation.

In the meantime, gravitational wave astronomy (GW 170817) and neutrino astronomy (SN 1987A) tied in observation of "precious" (not only because of gold&gadolinium production) events... they stay at the same place we did afters 1987.
Typical neutrino light curve for 15 M_\odot star
What could be missing in pre-sn neutrino calculations?

Standard procedure

We take a single stellar model (2-3 models at best), then "fire everything we have":

- do detailed stellar evolution
- integrate all timesteps & all zones of the model
- use the biggest nuclear network/NSE limited only by hardware/nuclear data
- use the most precise neutrino spectrum calculations
- include neutrino oscillations
- ...

Then we say: number of events in detector X from distance D will be N . . .

Is this procedure stable?

What if we do, e.g:

1. change initial (ZAMS) mass by $\pm 2 \text{ M}_\odot$,
2. increase/decrease metallicity Z by 0.005,
3. switch the stellar wind ON/OFF
4. modify nuclear reaction network by adding 3 or 100 isotopes?
Reference MESA model

1. $M_{\text{ZAMS}} = 16M_\odot$
2. $Z = 0.015$ (+0.05 dex for Betelgeuse using $Z_\odot = 0.0134$)
3. no stellar wind (mass loss zero)
4. standard MESA auto-extended nuclear reaction network:
 - H and He burning: basic.net
 - C/O burning: co_burn.net
 - Si burning: approx21.net

Is the neutrino emission from this model stable with respect to "small" perturbations of the above parameters: M_{ZAMS}, Z, wind, networks?
Reference model vs ZAMS mass perturbation

- ALL models end with $1.5 \pm 0.02 \ M_\odot$ Fe core
- more massive model more luminous
- perturbation $-2M_\odot$ cannot be considered small (ONeMg collapse?)

Tohoku U., Sendai, Japan, 7-9 March 2019
Doubled/tripled shell Si-burn peaks?
Reference model vs wind (on/off/enhanced)

- final stellar mass is: 16, 14.96, and 4.67 M_\odot
- despite extreme wind induced by production of intermediate mass metals during shell H/He burn enhanced CNO network, final core evolution is still very similar
Reference model vs nuclear reaction network

Last peak "smeared out"

- 16Msun_Z_0015_wind_adv_net_mesa_80
- 16Msun_Z_0015
- 16Msun_Z_0015_wind_adv_net_mesa_67

"Unstable" neutrino emission

log_{10}(L/L_\odot)

10^{46}\text{erg/s}

10^{45}\text{erg/s}

1 h 3 h 6 h 12 h Time Before Collapse

Tohoku U., Sendai, Japan, 7-9 March 2019
Narrow, prominent nuclear neutrino peaks
Conclusions

- our pre-SN neutrino signal properties verified independently by several groups (Japan, USA) in 2015-2018
- neutrino signal calculations stable with respect to small perturbations of mass, metallicity and wind
- reaction network type and size might affect pre-SN signal, especially in nuclear sector; systematic study required
- "ultimate" hydrostatical modelling of pre-SN available; hydrodynamic modelling attempts made
- KamLAND pre-SN early warning works, SK-Gd project on finish
- my wishlist for future: spectral ν emission computed directly from stellar evolution code (without post-process) from H to Si burn, hydro simulation of Si burn, and last but not least: Galactic supernova!
Conclusions

- Our pre-SN neutrino signal properties verified independently by several groups (Japan, USA) in 2015-2018.
- Neutrino signal calculations stable with respect to small perturbations of mass, metallicity and wind.
- Reaction network type and size might affect pre-SN signal, especially in nuclear sector; systematic study required.
- "Ultimate" hydrostatical modelling of pre-SN available; hydrodynamic modelling attempts made.
- KamLAND pre-SN early warning works, SK-Gd project on finish.
- My wishlist for future: spectral ν emission computed directly from stellar evolution code (without post-process) from H to Si burn, hydro simulation of Si burn, and last but not least: Galactic supernova!

ありがとうございました
Selected references

[2] J. Bahcall, Neutrino Astrophysics, §6.5 Fluxes from other stars

Neutrino spectra animation
Reference stellar model animation
Precision of the thermal neutrino calculations

Total thermal neutrino luminosity error

PSNS/MESA

Timestep

2600 2800 3000 3200 3400
Photon & neutrino HR diagram
Inverted ν mass hierarchy (s12 model)

$\log L_{\nu}$ [erg s$^{-1}$]

10^{42} to 10^{48}

Time B.C.

10 yr 1 yr 100 d 10 d 1 d 3 h 1 h 10 min

ν_e (dotted line)
$\bar{\nu}_e$ (solid line)
ν_μ (dashed line)
$\bar{\nu}_\mu$ (dash-dotted line)
MSW effect in H envelope leads to flavor exchange:

\[
\begin{align*}
F_{\nu_e}^{\text{osc}} &= p & F_{\nu_e} + (1-p) & F_{\nu_\mu} \\
F_{\nu_\mu}^{\text{osc}} &= (1-p) & F_{\nu_e} + p & F_{\nu_\mu} \\
F_{\bar{\nu}_e}^{\text{osc}} &= \bar{p} & F_{\bar{\nu}_e} + (1-\bar{p}) & F_{\bar{\nu}_\mu} \\
F_{\bar{\nu}_\mu}^{\text{osc}} &= (1-\bar{p}) & F_{\bar{\nu}_e} + \bar{p} & F_{\bar{\nu}_\mu}
\end{align*}
\]

Depending on mass hierarchy of neutrinos coefficients are:

\[
p = \begin{cases} \\
\sin^2 \theta_{13} \simeq 0.02 \\
\sin^2 \theta_{12} \cos^2 \theta_{13} \simeq 0.30
\end{cases} \quad \bar{p} = \begin{cases} \\
\cos^2 \theta_{12} \cos^2 \theta_{13} \simeq 0.68 \quad \text{Normal} \\
\sin^2 \theta_{13} \simeq 0.02 \quad \text{Inverted}
\end{cases}
\]