二重ベータ崩壊実験の国際情勢

吉田 斉 大阪大学大学院理学研究科

極低バックグラウンド素粒子原子核研究懇談会 2013年4月23日、24日 @ 富山

- β崩壊がエネルギー的に禁止されている、もしくはスピン遷移則で 強く抑制される → 二重ベータ崩壊(<u>β</u>)崩壊
 - ββ崩壊核種は多くある
 - TableはQ値の2 MeV以上の核種

核種	Q値 (MeV)	存在比 (%)
⁴⁸ Ca → ⁴⁸ Ti	4.271	0.187
⁷⁶ Ge → ⁷⁶ Se	2.040	7.8
⁸² Se → ⁸² Kr	2.995	9.6
⁹⁶ Zr → ⁹⁶ Mo	3.350	2.8
¹⁰⁰ Mo → ¹⁰⁰ Ru	3.034	11.8
¹¹⁶ Cd → ¹¹⁶ Sn	2.802	7.5
¹²⁴ Sn → ¹²⁴ Te	2.228	5.64
¹³⁰ Te → ¹³⁰ Xe	2.533	34.5
¹³⁶ Xe → ¹³⁶ Ba	2.479	8.9
$^{150}Nd \rightarrow ^{150}Sm$	3.367	5.6

極低バックグラウンド素粒子原子核研究懇談会

●崩壊モード:

- (A,Z) → (A,Z+2) + 2e⁻ + 2_v • 標準理論の枠内
 - 既に10以上のIsotopeで観測
 - ⁷⁶Ge, ⁸²Se, ¹⁰⁰Mo, ¹³⁶Xe, etc
 - 半減期; 10¹⁸~10²¹ yr

 $\underline{\textcircled{O}} \underbrace{\mathbf{O}}_{\nu\beta\beta} \underline{\mathbf{decay}} : (A,Z) \rightarrow (A,Z+2) + 2e^{-1}$

m

- 標準理論を越えるProcess
 - レプトン数非保存
 - ニュートリノ有限質量
 - マヨラナニュートリノ
- まだ観測されていない!
 半減期 ; T_{1/2} ≥ 10²⁶ yr

●崩壊モード:

 $\underline{3 \text{ Ovbb} \chi \text{ decay}} : (A,Z) \rightarrow (A,Z+2) + 2e^{-} + \chi$

- Majoron (軽い中性ボソン)の放出Process
- 標準理論を越えるProcess
 - レプトン数非保存
 - マヨラナニュートリノ

Ονββ崩壊の検出方法

2vββ decay:
 Q₆₀値をEnd pointに連続成分

Ονββ decay ;
 Q_{ββ}値にピーク

<u>Calorimetric法</u>

その他にも...

- 2本のElectron; Tracking
- <u>Spectroscopic にOvββと2vββを分離</u>
 他に必要なことは...

Ονββの発見

- レプトン数非保存過程
- ニュートリノ = マヨラナ粒子
 - ●重いニュートリノを自然に導入可能
 - →シーソー機構により、微小なニュートリノ質量を説明可能
 重いニュートリノの崩壊
 - ← CPの破れを要求 (レプトジェネシスシナリオ) 物質優勢の宇宙
- ニュートリノ質量の絶対値 T_{0v}⁻¹ = G_{0v}(Q_{ββ},Z) |M_{0v}|² <m_v>² 質量項の場合

 有効マヨラナ質量 〈m_v〉 = |ΣU_{ei}² m_i|
 ● 質量階層型の決定

ニュートリノ質量階層性

極低バックグラウンド素粒子原子核研究懇談会

Oscillation Parameters

● ニュートリノ振動実験の結果

arXiv:1205.4018v4 [hep-ph] 24 Oct., 2012

Global status of neutrino oscillation parameters after Neutrino-2012 D. V. Forero, M. Tórtola, and J. W. F. Valle

parameter	best fit	1σ range	2σ range	3σ range
$\Delta m_{21}^2 [10^{-5} \mathrm{eV}^2]$	7.62	7.43 - 7.81	7.27 - 8.01	7.12-8.20
$ \Delta m_{31}^2 [10^{-3} \text{eV}^2]$	$2.55 \\ 2.43$	2.46 - 2.61 2.37 - 2.50	2.38 - 2.68 2.29 - 2.58	2.31 - 2.74 2.21 - 2.64
$\sin^2 heta_{12}$	0.320	0.303–0.336	0.29 – 0.35	0.27–0.37
$\sin^2 heta_{23}$	$0.613 \ (0.427)^a \ 0.600$	0.400-0.461 & 0.573-0.635 0.569-0.626	0.38-0.66 0.39-0.65	0.36-0.68 0.37-0.67
$\sin^2 heta_{13}$	$0.0246 \\ 0.0250$	0.0218 - 0.0275 0.0223 - 0.0276	0.019–0.030 0.020–0.030	0.017–0.033
δ	0.80π -0.03π	$0-2\pi$	$0-2\pi$	$0-2\pi$

 Δm_{13}^2 , $sin^2 \theta_{23}$, $sin^2 \theta_{13}$, δ は上段の数字が順階層、下段が逆階層

極低バックグラウンド素粒子原子核研究懇談会

KKDC Claim

Published by part of collaboration members H.V.Klapdor-Kleingrothaus, et al., Mod. Phys. Lett. A21(2006) 1547

- Heidelberg-Moscow experiment
 ~ 11 kg of enriched ⁷⁶Ge
 - • II ky of en iched be
- エネルギースペクトルFit
 - 6 xガウス関数 + Linear BG
- Q値(2.039 MeV)にExcess有
 - 28.75 \pm 6.86 counts
- Claimed significance ; 4.2σ
 → 6σ with PSD解析

Results

• $T_{1/2}$ = 2.23 ^{+0.44}-0.31 × 10²⁴ year

•
$$\langle \mathsf{mv}
angle$$
 = 0.32 \pm 0.03 eV

- バックグラウンド 候補
 For ex., ^{206,207}Pb(n,γ)
- → KamLAND-Zen & EXO combined results almost excluded (97.5%C.L.)!

Requirements for OVBB Experiment

崩壊核の選択 → Ovββ 崩壊率を大きく

 $T_{0v}^{-1} = G_{0v}(Q_{\beta\beta},Z) |M_{0v}|^2 < m_v >^2$ (Mass term)

• Phase space, 各行列要素

検出器側では、感度は<u>Backgroundがあると一般的に</u>

 $< m_v > \propto T_{0v}^{-1/2} \propto (N_{BG} \cdot \Delta E / M \cdot T_{live})^{1/4}$

- 大容積 (M ~ Large)
 - 自然存在比/濃縮
- 低Background (N_{BG} ~ Small)
 - 高純度材料→検出器、遮蔽、地下実験室
 - Large $Q_{\beta\beta}$
 - 2νββの影響に関しては
 - エネルギー分解能 (ΔE; Good)、小さい2vββ崩壊率
- その他にも… (T_{live} ~ Long)
 - オペレーション容易

極低バックグラウンド素粒子原子核研究懇談会

- <u>理論的なモデル計算</u>
 - 不定性 ; ~ a few 倍
 - モデル依存
 - 2vββ崩壊の半減期測定 → モデル計算の妥当性をチェック?

→ 複数の核種で測定することが重要!

個々の実験計画

極低バックグラウンド素粒子原子核研究懇談会

Types of Detectors

● 検出器技術が多様化 → 大雑把に分類すると

- Enriched Xeon Observatory-

EXO-200検出器

- •場所: WIPP (~1600 m.w.e)
- ターゲット: 175kgの液体Xe (80.6%が¹³⁶Xe, Q値 = 2458 keV)
- 検出器: TPC (Time Projection Chamber) + LAAPD (Large Area Avalanche Photodiodes)
- 目標レート: 40 counts/2year (Q値付近±2σ、液体Xe 140 kg)

シンチレーション光観測 (APD) → Energy測定、a粒子の区別

極低バックグラウンド素粒子原子核研究懇談会

First Result of EXO-200

- 2011年11月: ¹³⁶Ge 2vββの半減期測定 (Ackerman et al. PRL107, 212501)
 - T_{1/2} = (2.11 \pm 0.04 stat. \pm 0.21 syst.) \times 10^{21} year
- 2012年7月: Ovββ測定 (M. Auger et al., PRL109, 032505)
 - $T^{0\nu\beta\beta}$ > 1.6 × 10²⁵ year (90% C.L.), $\langle m_{\beta\beta} \rangle$ < 140-380 meV (90% C.L.)

● ¹³⁶Xe付近のエネルギースペクトル

- Live time: 120.7 days
- Active 136Xe mass: 79.4 kg
- Exposure: 26.2 kg·yr (ref. 89.5 forKamLAND-Zen)

Expected events from fit			
±1 σ		±2 σ	
1.9	±0.2	2.9	±0.3
0.9	±0.2	1.3	±0.3
0.9	±0.1	2.9	±0.3
0.2	±0.01	0.3	±0.02
~0.2		~0.2	
4.1	±0.3	7.5	±0.5
1		Ę	5
1.5.10-	³ ± 0.1	1.4·10 ⁻³	± 0.1
	Expe ±1 1.9 0.9 0.9 0.2 ~0.2 (4.1) 1 1.5·10 ⁻	Expected ev 1.9 ±0.2 0.9 ±0.2 0.9 ±0.1 0.2 ±0.01 ~0.2 4.1 ±0.3 1.5·10 ⁻³ ±0.1	Expected events from ±1 v ±2 1.9 ±0.2 2.9 0.9 ±0.2 1.3 0.9 ±0.1 2.9 0.2 ±0.01 0.3 ~0.2 ±0.01 0.3 ~0.2 ±0.3 7.5 1 ±0.3 7.5 1.5·10 ⁻³ ± 0.1 1.4·10 ⁻³

観測レート: 60 counts/2year (ほぼ目標達成)

極低バックグラウンド素粒子原子核研究懇談会

- 2013年3月時点で、3倍のデータセットが利用可(約1年分)
- Rn BG抑制 (鉛-Cryostat間パージ)、FV最適化・エレキアップデート
- 測定期間: ~2015,6年 (4年の測定で、75-200 meV)

Туре	Fiducial	Livetime	T1/2 [year]	<mpp>[meV]</mpp>	Comment
EXO-200 最終感度	0.1 ton	4 year	5.5 × 10 ²⁵	< 75-200	Rn除去 解析update
nEXO第1段階	4.5	10	2.5×10^{27}	< 11-30	EXO-200大型化
nEXO第2段階	4.5	10	2.2×10 ²⁸	< 4-10	BGフリー
極低	モバックグラウン	ノド素粒子原子核研	「先懇談会 ※ NME	モデル間の不定性	(GCM - QRPA-2)

CUORE実験

Cryogenic Underground Observatory for Rare Events

極低バックグラウンド素粒子原子核研究懇談会

CUORE

- Site : GranSasso (Italy)
- Target: 741 kg TeO2 (~206 kg ¹³⁰Te) 結晶988個
 - Natural Abandance34 %, Q_{ββ}値 = 2528 keV
- 検出器:Bolometer ← 高分解能

	Cuoricino	CUORE-0	CUORE
¹³⁰ Te mass (kg)	11	11	206
Background (c/keV/kg/y) @ 2528 keV	0.17	0.05	0.01
E resolution (keV) FWHM @ 2615 keV	7	5-6	5
〈m_{ββ}〉 (meV) @ 90% C.L.	300-710	200-500	40-90

2003-2008

11 kg 130Te

Current Status of CUORE

- Cuoritino 40kg (2003-2008)
 - $T_{1/2} \ge 2.8 \times 10^{24}$ y
- CUORE-0 (2012年8月~)
 - CUOREのアセンブルラインで最初のタワー
 - Cuoritino cryostatを用いた独立の実験
 - △E(@2615keV) = 5.3keV (FWHM)
- CUORE 741kg (2014~)
 - 2013年2月にTowerアセンブリがスタート

Schedule				
Crystal	2012/12			
Thermistors	2013/03			
Cleaned Cu parts	2013/12			
Cryogenic	2013/12			
Tower Assembly	2014/04			
Detector insertion	2014/07			
Cool Down	2014/11			

Sensitivity

- KKDC Claim \rightarrow ¹³⁰Te case ; T_{1/2} = (0.49-1.0) x 10²⁵ 年
- CUORE-0 ; Single tower
 - 2年の測定でT_{1/2}~10²⁵年; KKDC領域の検証可能
- CUORE
 - 2年で~ 10²⁶年の感度到達
 - 最終感度T_{1/2} = 1.6×10²⁶ 年 → <m_{ββ}>= 41-95 meV

極低バックグラウンド素粒子原子核研究懇談会

▶ Phase II: 新たに20 kgのGe検出器を加える

GERDA Current Status

★**OVBB探索** November 2011 ~ May 2012

• Exposure: 6.10 kg*yr(⁷⁶Ge検出器)+3.17 kg*yr (nat.Ge検出器)

• <u>Background</u>: $(2.0^{+0.6}_{-0.4}) \times 10^{-2} \text{ cts/(keV \cdot kg \cdot yr)}$

→ (濃縮Ge検出器でQ_{pp}値±100 keV、Q_{pp}値±20 keVを除いた領域)
 20 kg*yearの測定を行った場合、GERDA実験の期待される測定感度は

※ **M**_v換算で230-390 meV

GERDA Sensitivity & Schedule

 Phase I:

 reach sensitivity of T_{1/2} = 2·10²⁵ yr at 90% C.L.

 m_{ββ} > ≤ 0.23-0.39 eV

 → check claim!

 Phase II: ■ reach background of 10⁻³ cts/(keV·kg·yr)
 Exposure of 100 kg·yr → T_{1/2} > 1.35·10²⁶ yr

 m_{ββ} > ≤ 0.09-0.15 eV

MAJORANA実験

極低バックグラウンド素粒子原子核研究懇談会

3

MAJORANA

⁷⁶Ge offers an excellent combination of capabilities & sensitivities. (Excellent energy resolution, intrinsically clean detectors, commercial technologies, best $0\nu\beta\beta$ sensitivity to date)

- 40-kg of Ge detectors
 - Up to 30-kg of 86% enriched ⁷⁶Ge crystals required for science and background goals
 - Examine detector technology options focus on point-contact detectors for DEMONSTRATOR
- Low-background Cryostats & Shield
 - ultra-clean, electroformed Cu
 - naturally scalable
 - Compact low-background passive Cu and Pb shield with active muon veto
- Agreement to locate at 4850' level at Sanford Lab
- Background Goal in the $0\nu\beta\beta$ peak ROI(4 keV at 2039 keV)

~ 3 count/ROI/t-y (after analysis cuts) (scales to 1 count/ROI/t-y for tonne expt.)

NEUTRINO2012の二重ベータ将来計画レビュートークより

極低バックグラウンド素粒子原子核研究懇談会

MAJORANA

Three Phases

Prototype cryostat (2 strings, ^{nat}Ge) (End 2012)

1st order of ^{enr}Ge (20 kg) on hand. 2nd order in process. Refinement/ processing facility in Oak Ridge (via NSF) has completed testing with ^{nat}Ge.

- Cryostat 1 (3 strings ^{enr}Ge & 4 strings ^{nat}Ge) (Fall 2013)
- Cryostat 2 (up to 7 strings enrGe) (Fall 2014)

極低バックグラウンド素粒子原子核研究懇談会

SNO-Lab. @カナダサドバリー

• 地下2000 m 世界最深のニュートリノ検出器

- 液体シンチレータ (LS) 実験
- 旧SNO実験のアクリル容器、PMTを再利用し、
 中身を重水(D2O)からLSに入れ替え
- Light yield;50倍以上
 - 低エネルギーに特化した物理実験が可能

	Borexino	KamLAND	SNO+
体積 (ton)	300	1,000	780
深さ (m)	1350 m	1000 m	2000 m
ミューオン Rate (/day)	~4,000	30,000	70
Photo Coverage	30	34	54

太陽ニュートリノ観測 (CNO, pep) 二重ベータ探索 (150Nd / 130Te)

極低バックグラウンド素粒子原子核研究懇談会

直径12 mのアクリル容器 PMT 9500本 水シールド 1700 ton (Total 7000 ton)

Sensitivity of SNO+

2013/04/23

を溶かすのは2014年夏/秋

Super-NEMO実験

極低バックグラウンド素粒子原子核研究懇談会

$$\mathbf{T}_{1/2}(\beta\beta0\nu) > \ln 2 \times \frac{\mathcal{N}_{A}}{\mathbf{A}} \times \frac{\mathbf{M} \times \boldsymbol{\varepsilon} \times \mathbf{T}_{obs}}{\mathbf{N}_{90}}$$

NEMO-3		SuperNEMO
¹⁰⁰ Mo	isotope	⁸² Se (baseline) or ¹⁵⁰ Nd or ⁴⁸ Ca
7 kg	isotope mass M	100-200 kg
8 %	efficiency ε	~ 30 %
²⁰⁸ Tl: < 20 μBq/kg	internal contaminations	²⁰⁸ Tl < 2 μ Bq/kg
²¹⁴ Bi: < 300 μBq/kg	²⁰⁸ Tl and ²¹⁴ Bi in the $etaeta$ foi	<i>if ⁸²Se</i> : ²¹⁴ Bi < 10 μBq/kg
8% @ 3MeV	energy resolution (FWHM)	4% @ 3 MeV
$T_{1/2}(\beta\beta0\nu) > 2 \times 10^{24} y$		T _{1/2} (ββ0ν) > 1 x 10 ²⁶ y
$< m_{v} > < 0.3 - 1.3 \text{ eV}$		$< m_{v} > < 40 - 100 \text{ meV}$

A module

	Demonstrator module	20 Modules
Source : ⁸² Se	7 kg	100 kg
Drift chambers for tracking	2 0000	40 000
Electron calorimeter	500	10 000
γ veto (up and down)	100	2 000
T _{1/2} sensitivity	6.6 10 ²⁴ y (No background)	1. 10 ²⁶ y
<m<sub>v> sensitivity</m<sub>	200 - 400 meV	40 - 100 meV

Demonstrator Desian

- Ultra low background detector
- Modular detector with 3 main components :
 - Central source foil frame : 7 kg of isotope
 Tracking : 2 000 drift chambers
 Calorimeter : 712 scintillators+ PMTs
- Shielded by iron (300 tons) and water
- Installed at Modane Underground Laboratory (4800 m.w.e.)

Demonstrator schedule @ Modane

- Beginning of installation @ LSM (end 2013)
- Commissioning 2014

Data taking start (end 2014)

Another Projects

極低バックグラウンド素粒子原子核研究懇談会

COBRA

Cadmium Zinc Telluride O-Neutrino Double-Beta Research Apparatus

極低バックグラウンド素粒子原子核研究懇談会

LUCIFER

Low - background Underground Cryogenics Installation For Elusive Rates

極低バックグラウンド素粒子原子核研究懇談会

45

AMoRE

Advanced Mo based Rare process Experiment

- 場所: YangYang地下実験施設 (韓国, 地下700m)
- ターゲット: ¹⁰⁰Mo (Q値 = 3034 keV, 9.63%)
- 検出器: ⁴⁰Ca¹⁰⁰MoO₄極低温シンチレーション検出器
- 第1段階(戦略):
 - 室温, 6kg結晶, 5% FWHM, 3年測定
- 第2段階(戦略):
 - 極低温, 100kg結晶,15 keV FWHM, 5年測定
 - 最終目標値: mpp < 50 meV (T^{Ov}1/2 > 3 × 10²⁶ year)
 - ターゲット: ¹⁰⁰Mo ~50 kg

NEXTNeutrino Experiment with a Xenon Time-Projection Chamber

極低バックグラウンド素粒子原子核研究懇談会

各実験の数字をそのまま使う

Experiment	Start Date	Achieved Date	Sensitivity
GERDA-1	2011/11	2013/11	230 meV
GERDA-2	2013/11	2014/11	100 meV
SNO+	2014/7	2015/7	150 meV
CUORE-0	2012/8	2014/8	200 meV
CUORE	2014/11	2021/11	41 meV
EXO-200	2011/4	2012/4	140 meV
EXO-1000	-	-	11 meV
Super-NEMO	2014/12	2015/12	200 meV
KamLAND-1	2012/4	2013/01	160 meV
KamLAND-2	2014/1	2015/1	60 meV
KL-Zen2	2017/1	-	20 meV

まとめ

