KamLAND2-Zen

東北大学ニュートリノ科学研究センター 井上邦雄 KamLAND-Zen collaboration

平成25年4月23日 極低バックグラウンド素粒子原子核研究懇談会

ニュートリノの質量階層構造 および有効質量は未解明

● 最近の宇宙観測では有限で探索可能なニュートリノ質量を示唆するものがある。
 ● ニュートリノ振動でも逆階層構造を好むものがある。

いつ見つかっても不思議でない。

● 最先端の感度を維持し続け、まず発見をめざすことが重要。
 ○ 現在は確実な技術でスケーラビリティーを確保

● 最近の宇宙観測では有限で探索可能なニュートリノ質量を示唆するものがある。

● ニュートリノ振動でも逆階層構造を好むものがある。

いつ見つかっても不思議でない。

マヨラナ性の証明
有効質量(質量階層構造)の測定
「軽いニュートリノ質量の謎」の究明
「宇宙物質優勢の謎」の究明

● 最先端の感度を維持し続け、まず発見をめざすことが重要。

○ 現在は確実な技術でスケーラビリティーを確保

● 最近の宇宙観測では有限で探索可能なニュートリノ質量を示唆するものがある。

● ニュートリノ振動でも逆階層構造を好むものがある。

いつ見つかっても不思議でない。

● 最先端の感度を維持し続け、まず発見をめざすことが重要。
○ 現在は確実な技術でスケーラビリティーを確保

● 0 ν 2 β 発見が無くても価値の高いプロジェクトとするためには、
○ 逆階層構造をカバーする感度が重要。

- ・宇宙観測、ニュートリノ振動と矛盾したら → ニュートリノはディラック
- ・ニュートリノはマヨラナと信じれば → 消去法で標準階層構造
- 多目的にし、堅い成果も用意する。

地球 ν 観測、第4世代 ν 探索、太陽 ν 観測、暗黒物質探索など

● 最近の宇宙観測では有限で探索可能なニュートリノ質量を示唆するものがある。

● ニュートリノ振動でも逆階層構造を好むものがある。

いつ見つかっても不思議でない。

● 最先端の感度を維持し続け、まず発見をめざすことが重要。
○ 現在は確実な技術でスケーラビリティーを確保

● Oν2β発見が無くても価値の高いプロジェクトとするためには、

○ 逆階層構造をカバーする感度が重要。

- ・宇宙観測、ニュートリノ振動と矛盾したら → ニュートリノはディラック
- ・ニュートリノはマヨラナと信じれば → 消去法で標準階層構造
- 多目的にし、堅い成果も用意する。

地球 ν 観測、第4世代 ν 探索、太陽 ν 観測、暗黒物質探索など

● 0 ν 2 β 発見が発見されたなら、

○ 高精度測定

- 他核種での測定 → 核行列要素の不定性低減、背景物理の選別 技術の多様性
- トラックの測定 → 背景物理の選別 技術の多様性
- 宇宙観測やβ崩壊との統合解析 → 背景物理の選別、マヨラナCP測定も視野に

KamLAND-Zen

ニュートリノを伴う二重β崩壊と伴わない二重β崩壊

~320kg 90% 同位体濃縮 ¹³⁶Xeを導入 将来800kg~1000kgに拡張

KamLANDを使うメリット

- 稼働中の装置
 - → 相対的に低コストで迅速に開始可能
- 巨大かつ清浄 (1200m³, U: 3.5x10⁻¹⁸g/g, Th: 5.2x10⁻¹⁷)
 - → 外部の放射線が問題にならない (Xe とミニバルーンには高清浄が必要)
- (必要時は低コストで) Xe含有液体シンチレータの純化、 ミニバルーンの換装が可能
 - → 拡大も容易 (数トンのXeにも対応可能)
- β,γを漏らさず観測
 - → バックグラウンド識別が相対的に容易
- 反ニュートリノ観測を並行できる
 → 原子炉停止時の良質の地球ニュートリノデータ

Prototype Mini-balloon and rehearsal of deployment

80 μ m thick polyethylene

established deployment, inflation, liquid replacement

 $25 \ \mu m$ thick Nylon 6

suspension structure

10 m length when folded

rehearsal at 8 m depth pool

Prototype Mini-balloon and rehearsal of deployment

25 μ m thick Nylon 6

rehearsal at 8 m depth pool

suspension structure

10 m length when folded

80 μ m thick polyethylene

established deployment, inflation, liquid replacement

Xenon handling system

Xenon mixer and density control system

Xenon extraction and storage system

Prototype Mini-balloon and rehearsal of deployment

25 μ m thick Nylon 6

suspension structure

10 m length when folded

rehearsal at 8 m depth pool

80 μ m thick polyethylene

established deployment, inflation, liquid replacement

Xenon handling system

Xenon mixer and density control system

Clean room in the dome

New cavity and LS storage 10

Production of real Mini-balloon

fabrication in Class 1 super-clean-room (class 1 = less than one 0.5 micron particle in 1 cube feet

gores from the film

Newly developed welding

Deployment of balloon and tube

balloon going through light shield

surface of mini-balloon.

inflate with dummy LS and then replace with Xe-loaded LS density adjustment and tube extraction follow

supply tube

welding line

DAQ started on September 24, 2011 (only 2 years from the project start)

Energy Calibration

Measurement of the $2v2\beta$ half life

3 3.5 E (MeV)

Background situation

Peak fit with 0v signal

Peak position is different from that of expected 0v. 0v only is rejected at more than 8σ level.

放射性不純物

2つの可能性:

- ・
 <u>放射性不純物</u>なら長寿命なはず。
- <u>宇宙線による原子核破砕</u>ならミューオンとの相関がみえるはず。

thousands of millions of BNSDFの全原子核の崩壊を調査。

http://ie.lbl.gov/databases/ensdfserve.html

100秒以下の時間相関を <0.007 /ton・day (90% CL). → small

I00秒~30日の時間相関を持つものは、A,Zの近い原子核の エネルギースペクトルを調査して制限 → negligible

核反応 (α, γ), (α, αγ), (n, γ) はどれも断面積が小さい。 → negligible

30日以上の寿命で 0v に近いピークを作るものは、4つの候補。

^{110m}Ag ($T_{1/2}=250d$), ²⁰⁸Bi(3.68×10⁵y), ⁸⁸Y(107d), ⁶⁰Co(5.27y)

GEANT4 はオーダー評価には十分使える。

地下での原子核破砕は小さい。 (GEANT4)

GEANT4 はオーダー評価には十分使える。

地下での原子核破砕は小さい。 (GEANT4)

Estimated ¹¹⁰Ag production rate (aboveground) is ~30/day/400kg-¹³⁶Xe Measured BG rate (underground) is ~3/day/300kg-¹³⁶Xe

Limit on the $0v2\beta$ half life

Limit on the $0v2\beta$ half life

DS-1 + DS-2:213.4 日

DS-1 + DS-2:213.4日 10^{5} ²⁰⁸Bi – Data ----- ⁸⁸Y Total -----¹³⁶Xe 2νββ 10^{4} ^{110m}Ag ····· Total $^{238}\text{U} + ^{232}\text{Th}$ (0vββ U.L.) 10^{3} Events/0.05MeV + ²¹⁰Bi + ⁸⁵Kr ¹³⁶Xe 0νββ IB/External (90% C.L. U.L.) Spallation 10^{2} **Energy Spectrum** 10 = 40 ²⁰⁸Bi 35 Data ⁸⁸Y Total 1 110mAg Ē 30 Total (0vββ U.L.) 25 Events/0.05MeV ¹³⁶Xe 0νββ 10^{-1} (90% C.L. U.L.) 20 3 2 Visible Energy (MeV) 15 10 5 0 -5 2.2 2.8 2.4 2.63 Visible Energy (MeV)

世界の競争状況

Nucleus	Experiment	Exposure (kg-yr)	T ^{0v} 1/2 limit (yr) @ 90% C.L.	<m<sub>ββ> (eV)</m<sub>
⁴⁸ Ca → ⁴⁸ Ti	ELEGANT VI	0.025	$> 5.8 \times 10^{22}$	< 3.5-22
$^{76}\text{Ge} \rightarrow ^{76}\text{Se}$	Heidelberg-Moscow	35.5	$> 1.9 \times 10^{25}$	< 0.2-0.32*
⁸² Se → ⁸² Kr	NEMO-3	4.2	$> 3.2 \times 10^{23}$	< 0.8-1.4
$^{96}\mathrm{Zr} \rightarrow ^{96}\mathrm{Mo}$	NEMO-3	0.031	$> 9.2 \times 10^{21}$	< 9.3-13.7
$^{100}Mo \rightarrow ^{100}Ru$	NEMO-3	31.2	$> 1.0 \times 10^{24}$	< 0.4-0.7
$^{116}Cd \rightarrow ^{116}Sn$	Solotvina	0.14	$> 1.7 \times 10^{23}$	< 1.2-2.2
¹²⁸ Te→ ¹²⁸ Xe	(Geo chemical)	-	$> 7.7 \times 10^{24}$	< 0.7-1.2
¹³⁰ Te→ ¹³⁰ Xe	CUORICINO	19.75	$> 2.8 \times 10^{24}$	< 0.44-0.81
$^{136}Xe \rightarrow ^{136}Ba$	KamLAND-Zen	89.5	> 1.9 × 10 ²⁵	< 0.16-0.33
	EXO-200	32.5	$> 1.6 \times 10^{25}$	<0.16-0.33
$^{150}Nd \rightarrow ^{150}Sm$	NEMO-3	0.093	> 1.8 × 10 ²²	< 4.0-6.3

*グループの一部が有限値を主張 (KK クレイム)

 $T^{0v}_{1/2} = 2.23^{+0.44}_{-0.31} \times 10^{25} \text{ yr}$ <math display= 0.18-0.43 eV @ 2 σ C.L. (QRPA model)

KKクレイムの検証 \rightarrow ⁷⁶Ge (GERDA) ではなく、 ¹³⁶Xe (KamLAND-Zen + EXO) が一番乗り 感度競争 \rightarrow ¹³⁶Xe (KamLAND-Zen, EXO), ¹³⁰Te (CUORE)

主要バックグラウンドと対策

主要バックグラウンドと対策つづき

- ¹¹⁰ Mg 地上での原子核破砕 (249.79d) or 福島原発由来、マルチバーテックス(β⁻+γs) 対策 Xe-LS純化、高清浄ミニバルーン、撮像、**高分解能**
- ²¹⁴Bi ミニバルーン不純物、マルチバーテックス(β⁻+ γ s)、²¹⁴Bi-²¹⁴Po 遅延二重

対策 高清浄ミニバルーン、有効体積、発光フィルム、撮像、 高分解能

- ¹⁰**C** 地下での原子核破砕 (19.255s)、マルチバーテックス(β⁺+γ)、μ-n-¹⁰C 遅延三重 対策 新型電子回路、昇圧キセノン、撮像、**高分解能**
- 2v2β 不可避 対策 高分解能(分解能の5~6乗で低減)
- **ν**solar 不可避対策 昇圧キセノン、高分解能(分解能の1乗で低減)

開発状況

昇圧キセノン → 圧力に比例したキセノン濃度向上は確認済み 発光フィルム → PETシンチレータをテスト中

^{110m}Ag → <u>Xe-LS純化中</u>

µ-n-¹⁰C 遅延三重 → <u>新型電子回路(プロトタイプ2/3で稼働)</u>

マルチバーテックス → 撮像 **高分解能** → <u>集光ミラー、大光量LS</u>、高量子効率PMT → KamLAND2 ×1.8 (×1.4) 17″Φ→20″Φ, ε=22% → 30+% ×1.9 = ×4.8

Winston cone (集光ミラー) KamLAND2-Zen

導入部拡大 5トン程度の釣り下げ能力

いろいろな装置を導入できる。 CaF₂, CdWO₄, ¹⁴⁴Ce, Nal 他 1000kg 濃縮キセノン

光被覆率 > x2 光収集量 > x1.8

液体シンチレータ改良

カムランド液体シンチレータ 8,000 光子/MeV 標準的な液体シンチレータ 12,000 光子/MeV x1.4

高量子効率PMT または HPD x1.9 $17'' \Phi \rightarrow 20'' \Phi$, $\epsilon = 22\% \rightarrow 30+\%$

目標 *σ* (2.6MeV)= 4% → < 2.5% 単純計算 < 2%

極低放射能環境でのニュートリノ研究

必要人員 建設期 60人程度 (2015年度以降)

20人程度不足 学生アルバイト・技術職員等に期待

必要経費 合計27億円 (運転経費のぞく)

内訳

〇高エネルギー分解能化	
大光量液体シンチレータ(+バッファーオイル)3000立方メートル	7億円
高量子効率光センサー	6億円
集光ミラー	1億円
○汎用化	
導入口拡張+クレーン設置	1億円
○極低放射能環境の増強	
低放射能バルーン	1億円
デッドタイムフリー電子回路	2億円
革新技術開発(発光バルーン、高感度撮像、高圧キセノン導入)	1億円
○二重β崩壊核の増量	
Xe136追加 400kg(合計1000kg)	8億円

KamLAND-Zen Collaboration

A. Gando,¹ Y. Gando,¹ H. Hanakago,¹ H. Ikeda,¹ K. Inoue,^{1,2} K. Ishidoshiro,¹ R. Kato,¹ M. Koga,^{1,2} S. Matsuda,¹ T. Mitsui,¹ D. Motoki,¹ T. Nakada,¹ K. Nakamura,^{1,2} A. Obata,¹ A. Oki,¹ Y. Ono,¹ M. Otani,¹ I. Shimizu,¹ J. Shirai,¹ A. Suzuki,¹ Y. Takemoto,¹ K. Tamae,¹ K. Ueshima,¹ H. Watanabe,¹ B.D. Xu,¹ S. Yamada,¹ H. Yoshida,¹ A. Kozlov,² S. Yoshida,³ T.I. Banks,⁴ S.J. Freedman,^{2,4} B.K. Fujikawa,^{2,4} K. Han,⁴ T. O'Donnell,⁴ B.E. Berger,⁵ Y. Efremenko,^{2,6} H.J. Karwowski,⁷ D.M. Markoff,⁷ W. Tornow,⁷ J.A. Detwiler,⁸ S. Enomoto,^{2,8} and M.P. Decowski^{2,9}

(The KamLAND-Zen Collaboration)

¹Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
²Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa, 277-8583, Japan
³Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
⁴Physics Department, University of California, Berkeley, and
Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
⁵Department of Physics, Colorado State University, Fort Collins, Colorado 80523, USA
⁶Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
⁷Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA and
Physics Departments at Duke University, North Carolina Central University, and the University of North Carolina at Chapel Hill
⁸Center for Experimental Nuclear Physics and Astrophysics, University of Washington, Seattle, Washington 98195, USA

(カムランドのサブセット) 42名