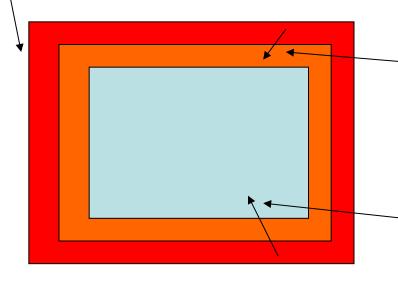

低バックグラウンド技術II

極低バックグラウンド素粒子原子核研究懇談会 (富山商工会議所) 2013年4月24日 東大宇宙線研 小川 洋

- •Report the topic from LRT 2013 (Apr 10-12,2013, LNGS)
 - –Low background counting => Ikeda (Tohoku)
 - -Background reduction => Ogawa (ICRR)
- •Contents:
 - Background reduction technique
 - -バックグラウンド源とその対策: LRT2013からの紹介
 - -Radonについて
 - -Summary

Background reduction technique:


バックグラウンド源とその対策:検出器部材

検出器部材からのRI

PMT, 検出器形成部材など Gamma, (U/Th/Co/40K etc)

β,α

ex): (α,n)からのneutron

部材のRI測定による部材選別

HPGe detector

ICP-MS

Radon emanation meas.

Alpha, beta counter

低バックグラウンドである部材を選定する。

また、ここをしっかり押さえることで、

検出されるBGを予想する必要がある。

Shielding

検出器内部に侵入するBGを減らす。 =>むろんshield自身もきれいでなくては ならない。

解析による除去

エネルギー、位置事象再構成、PID, Trackingなど

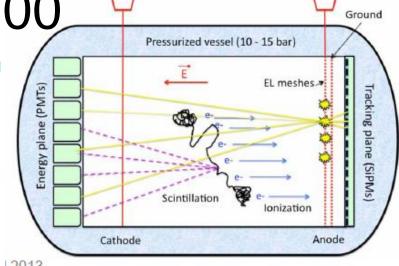
LRT報告

NEXT-100

• Search for $\beta\beta$ of ¹³⁶Xe (Q=2.458 MeV) with ~100 kg at Canfranc Underground Laboratory (LSC) in Spain

• Challenge: measurement of topological signature

+ optimization of energy resolution


+ detector = source approach

• Design: high pressure gaseous xenon TPC with proportional

electroluminescent (EL) amplification

HV /

Energy resolution : <1% for $Q_{\beta\beta}$ BG level 8x10^-4count/(keVkgyr)

Ge gamma-ray spectrometry

- Several p-type closed-end coaxial HPGe detectors of LSC Radiopurity Service

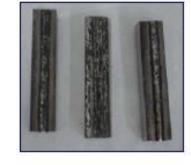
	Detectors	DAQ	Shielding	Operation
LSC Radiopurity Service: GeOroel GeAnayet GeTobazo GeLatuca	410-420 cm³ Al cryostats	Canberra DSA 1000 modules	5 cm Cu + 20 cm low activity Pb flux of N ₂ gas	Hall C, since 2011
U. Zaragoza: Paquito	190 cm ³ Cu cryostat	standard Canberra LA + ADC	10 cm arch. Pb + 15 cm low activity Pb flux of N ₂ gas	Canfranc old facilities for several years, now at Hall C

S. Cebrián, LRT2013 Workshop, LNGS 10-12 April 2013

Radiopurity control in the NEXT-100 double beta decay experiment: procedures and initial measurements V. Alvarez et al, 2013 JINST 8 T01002

LRT報告

Results: vessel


#	Material	Supplier	Technique	Unit	²³⁸ U	²²⁶ Ra	²³² Th	²²⁸ Th	²³⁵ U	⁴⁰ K	60Co	137Cs
	Vessel							100000000				
11	Tī	SMP	Ge	mBq/kg	<233	< 5.7	< 8.8	< 9.5	3.4 ± 1.0	<22	<3.3	< 5.2
12	Ti	SMP	Ge	mBq/kg	<361	< 6.6	<11	<10	< 8.0	<15	<1.0	< 1.8
13	Ti	Ti Metal Supply	Ge	mBq/kg	<14	< 0.22	< 0.5	3.6 ± 0.2	0.43 ± 0.08	< 0.6	< 0.07	< 0.07
14	304L SS	Pfeiffer	Ge	mBq/kg		14.3±2.8	9.7±2.3	16.2±3.9	3.2±1.1	<17	11.3±2.7	< 1.6
15	316Ti SS	Nironit, 10-mm-thick	Ge	mBq/kg	<21	< 0.57	< 0.59	< 0.54	< 0.74	< 0.96	2.8±0.2	< 0.12
16	316Ti SS	Nironit, 15-mm-thick	Ge	mBq/kg	< 25	< 0.46	< 0.69	< 0.88	< 0.75	< 1.0	4.4 ± 0.3	< 0.17
17	316Ti SS	Nironit, 50-mm-thick	Ge	mBq/kg	67±22	<1.7	2.1±0.4	2.0±0.7	2.4±0.6	< 2.5	4.2±0.3	< 0.6
18	Inconei 623	Wiecanizados Kamer	Ge	mbq/kg	<120	<1.9	< 5.4	< 5,2	<4.0	< 3.9	< 0.4	< 0.6
19	Inconel 718	Mecanizados Kanter	Ge	mBq/kg	309 ± 78	< 3.4	< 5.1	< 4.4	15.0 ± 1.9	<13	<1.4	<1.3

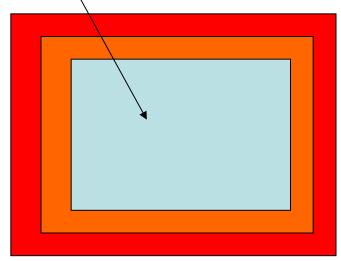
Tiも候補であったが、最終的に 316Ti stainless steelを選定した。

New measurements:

Material	Supplier	Technique	Unit	238U	²²⁶ Ra	²³² Th	²²⁸ Th	235()	40K	60Co	137Cs
TIG-MIG welding on 316Ti SS	Nironit (SS), Movesa	Ge	mBq/cm	< 7.3	< 0.11	< 0.32	< 0.21		0.86 ± 0.14		

バックグラウンド源とその対策: 検出器target自身

検出器target自身からのRI


Scintillator

⇒>液体、結晶、noble gas Gamma, (U/Th/Co/40K etc)

 β,α

(α,n)からのneutron

85Kr, 222Rn及び娘核子

RI測定によるtarget選別

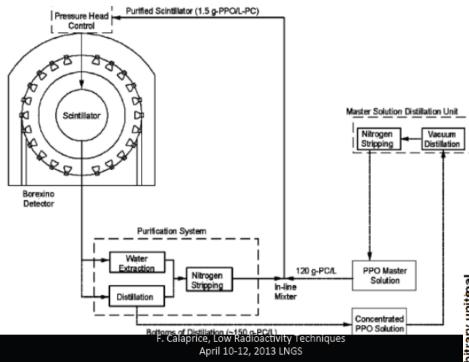
Purification

液体:water extraction, distillation,

gas stripping

結晶:高純度結晶の精製

Noble gas: filtering, distillation


解析による除去

エネルギー、位置事象再構成、PID, Coincidence, Trackingなど ※有効体積内で事象が起こる場合、 位置事象再構成ではBG除去が 難しい。

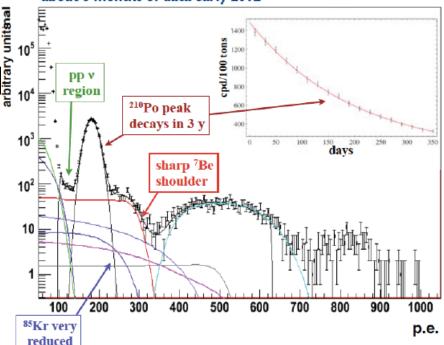
LRT報告

12/13

Borexino

• 85 Kr: $30 \text{ cpd/} 100 \text{t} \rightarrow < 5 \text{ cpd/} 100 \text{t}$

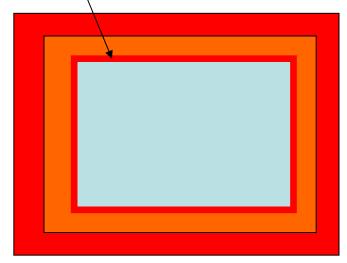
• 210 Bi: $70 \text{ cpd}/100t \rightarrow 20 \text{ cpd}/100t$


• ²¹⁰Po: Essentially unchanged (?)

• 238 U (226 Ra): < 9.7 x $^{10^{-19}}$ g/g

• 232 Th: $< 2.9 \times 10^{-18} \text{ g/g}$

- •210BiからのBGが2007以来増加傾向であったことから純化を実施
- •2010-2011 purification. (x6)
 - •Water extraction for 210Pb (210Bi) removal. (De-ionized water)
 - Nitrogen stripping for Kr removal.



バックグラウンド源とその対策: surface contamination

Surface contamination

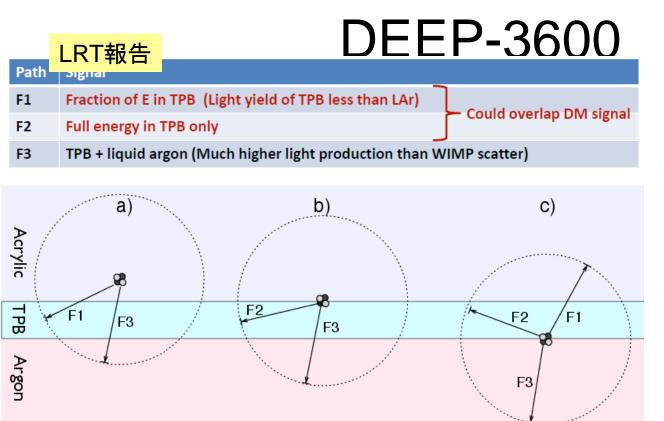
222Rn娘核子 210Pb->210Bi->210Po

- ・実験開始後になって 問題となることが多々ある。
- =>どのくらい汚染されてるかの 管理が難しくなる
- •BGのスペクトラムが検出器 表面状態により、予想が難しい。
- •一度ついてしまうと、除去が大変

クリーン環境

部材材料製作段階から、クリーン環境を保つとともに、環境の管理が必要となる。

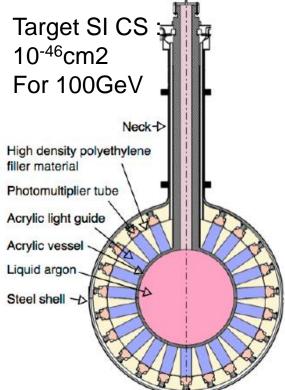
Cleaning


210Pb~を表面から除去する。 純水、化学、EP洗浄

Shielding

よりきれいな部材でカバーする。 =>XMASS

解析による除去


エネルギー、位置事象再構成、PID, Trackingなど

Chris Jillings: Radon Daughters in DEAP-3600 Acrylic Vessel

Limit exposure to ²²²Rn during manufacture to control long-lived ²¹⁰Pb Resurface AV under vacuum after construction Coat AV with pure TPB under vacuum

※Toward limit: 0.01 events in 3 ton-yr

Dark matter
Experiment with
Argon and
Pulse-shape discrimination

3600kg LAr in a clean spherical acrylic vessel coated with wavelength shifter

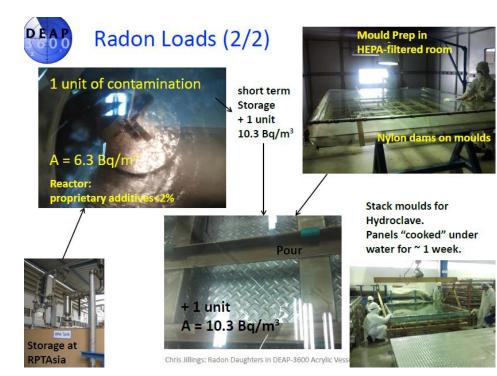
Estimated light yield: 8 pe/keV

Backgrounds: < 0.2

Exposure: 1000kg FV for 3 years

Radon Loads (1/2)

1 unit of contamination


 $A \cong 5Bq/m^3$

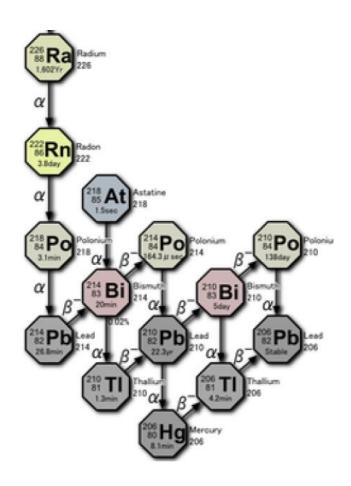
Chris Jillings: Radon Daughters in DEAP-3600 Acrylic Vessel

LRT報告

1 unit of contamination A = 6.3±3.5 Bg/m³

Estimated ²¹⁰Pb Loads

	AV Shell	
	Thai MMA	
Distillation [cont. units]	1.25	
Storage [cont. units]	0	
Truck [cont. units]	1	
A(²²² Rn) [Bq/m³]	3.5±2	
Expected ²¹⁰ Pb [mBq/tonne]	3.6	
	RPT Asia	
MMA Storage tank [cont. units]	1	
Reactor Vessel [cont. units]	0.5	
Post-reactor storage [cont. units]	1	
Moulds [cont. units]	1	
A(²²² Rn) [mBq/m³]	6.3 to 10.8	
Expected ²¹⁰ Pb [mBq/tonne]	10 to 17	
Total ²¹⁰ Pb [mBq/tonne]	14 to 21	

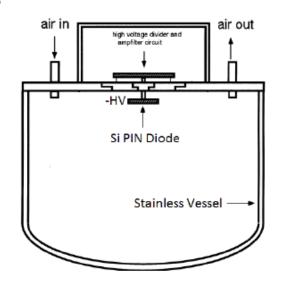

• Using $\rho(MMA) \cong 1$ tonne/m³ and the decay constants of ²²²Rn and ²¹⁰Pb we obtain

$$A(^{210}Pb)\left[\frac{mBq}{tonne}\right] = 0.46 A(^{222}Rn)\left[\frac{Bq}{m^3}\right]$$

Toward contamination of 210Pb : <31mBq/ton

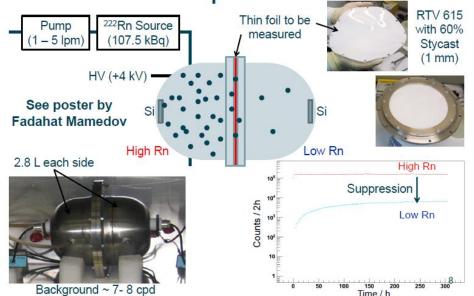
Radonについて

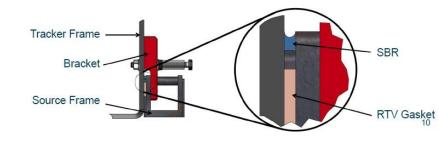
- BG RI : Pb(β,γ), Bi (β,γ) Po(α)
- 222RnのBGに対する特徴(厄介さ)
 - 部材からのemanationで検出器内へし みこんでくる。
 - 環境に多く存在する。
 - 建設時に娘核が付着し、Surface contaminationとなる。
 - ・ 検出器部材を通したdiffusionで検出器 内にしみこんでくる。
 - メタルシールならば心配はない。
 - これらが観測される時はdecay chain 上流との崩壊平衡が崩れている点に注 意。
 - 222Rn以降もしくは210Pb以降。
 - 210Pb~210Bi~210Poの保障もない。
 - 210Pb~22yr half life
 - 表面洗浄などによるRIごとのとれやすさ (とれにくさ)



SuperNEMO

• 要求されるRadon :<0.15mBq/m3


- Volume = 0.7 m³
- Sensitivity of 2.8 mBq (may be improved)
- · Good for large surfaces
- e.g. 35 m² of Al Foil: A < 0.08 mBq/m²



Posters: HPGe - Frédéric Perrot. Emanation Tank - Benjamin Soule

Diffusion R&D: Setup for measurements

	<u> Fhickness</u>	diff coff	<u>diff_lengh</u>				
Adhesives/Sealants							
Silicone (RTV 615)	2100	1080	22800				
Stycast 1264	2000	<0.43	<455				
SBR (Synthomer 47B40) + HDPE	700 + 120	0.27	400				
PVA (Emultex 518) + HDPE	6 + 11	<0.00038	<13				
HDPE (2 layers)	2×144	19	3000				

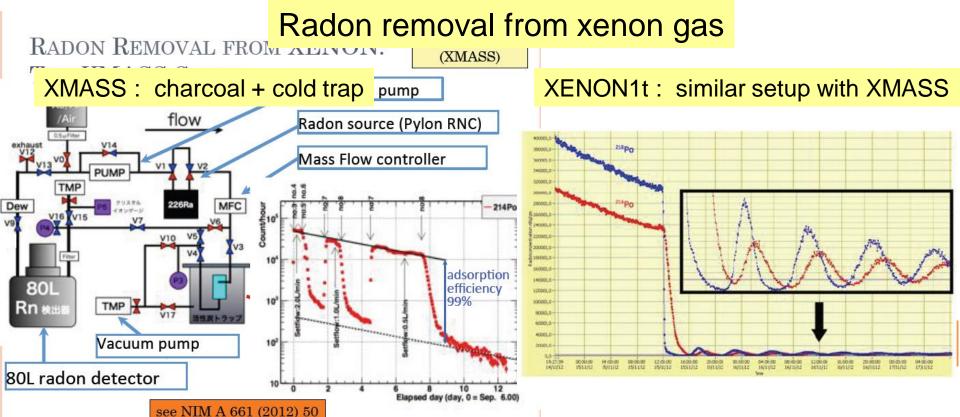
Radon除去技術 (summary talk : Hardy Simgen)

空気:

- Method 1: 活性炭による乾燥空気からの除去
 - ~1mBq/m3
 - Super-K, NEMO, CUORE, Darkside etc.
- Method 2: O2 + 蒸発窒素で作る合成空気
 - < 0.1 mBq/m3
 - Borexino
 - 高価、扱いが面倒

RADON REDUCTION SYSTEM FOR AMBIENT AIR

窒素、アルゴン:活性炭+cold trapによる除去技術


- In Gerda experiment:
 <1μBq/m³ at 18 m³/h achieved for gaseous argon.
- o Appl. Rad. Isot. 67 (2009) 922.

- Liquid nitrogen purification plant for Borexino
- <0.5 μBq/m³ at 100 m³/h production rate
- o Appl. Rad. Isot. 52 (2000) 691.

Hardy Simgen, MPIK, LRT 2013

- Xenon:
 - 窒素、アルゴンに比べて、ラドンとの分離が難しい。
 - Xenonとradonの性質が似ている。
 - Cold trap はおよそ-100度が下限~Xenon凝固点
 - Challenging topic!

Summary

- LRT2013で報告されたバックグラウンド除去 技術を、バックグラウンド源ごとに報告した。
 - 検出器部材からのRI
 - 検出器target自身からのRI
 - Surface contamination
 - radon
- ・ "バックグラウンド除去"は"低バックグラウンド の測定"と極めて密接に関連している。

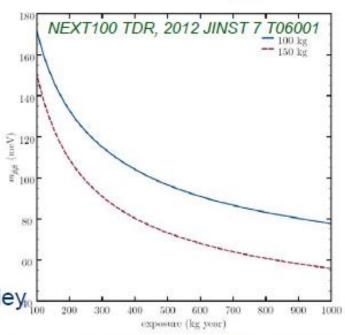
backup

NEXT: <u>N</u>eutrino <u>Experiment with a Xenon</u> <u>Time-Projection Chamber</u> <u>Mnext</u>

Sensitivity and background requirements

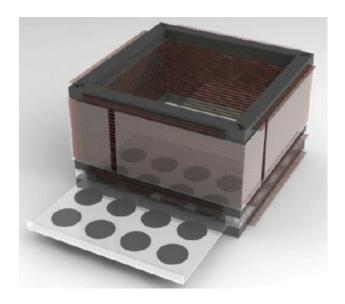
- Energy resolution: <1% FWHM at Q_{ββ}
- → electroluminiscence
- Background level: 8 10⁻⁴ c keV⁻¹ kg⁻¹ y⁻¹
- → pattern recognition + radiopurity control

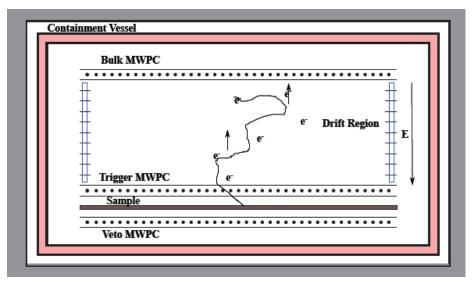
²⁰⁸TI: 2.615 MeV


²¹⁴Bi: 2.448 MeV

Work on EL prototypes at Valencia and Berkeley, bongoing

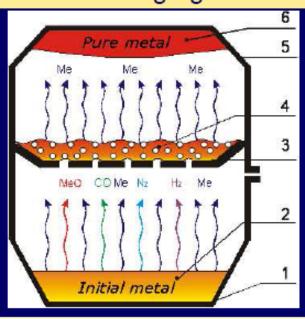
Near-Intrinsic Energy Resolution for 30 to 662 keV Gamma Rays in a High Pressure Xenon Electroluminescent TPC, V. Alvarez et al, NIMA 708 (2013) 101-114 Initial results of NEXT-DEMO, a large-scale prototype of the NEXT-100 experiment V. Alvarez et al, JINST 8 (2013) P04002


- Installation of shielding and ancillary system started at LSC
- Assembly and comissioning of detector expected for 2014



Low background counting techniques

- BetaCage: screening the beta & alpha from BG isotopes with 0.1 beta/(keV x m2 x day) or 0.1 alpha/(m2 x day) sensitivity.
- => Observe the decay from no gamma emitting isotope (ex 210Bi). (other method is ICP-MS)
- Can see hot spot



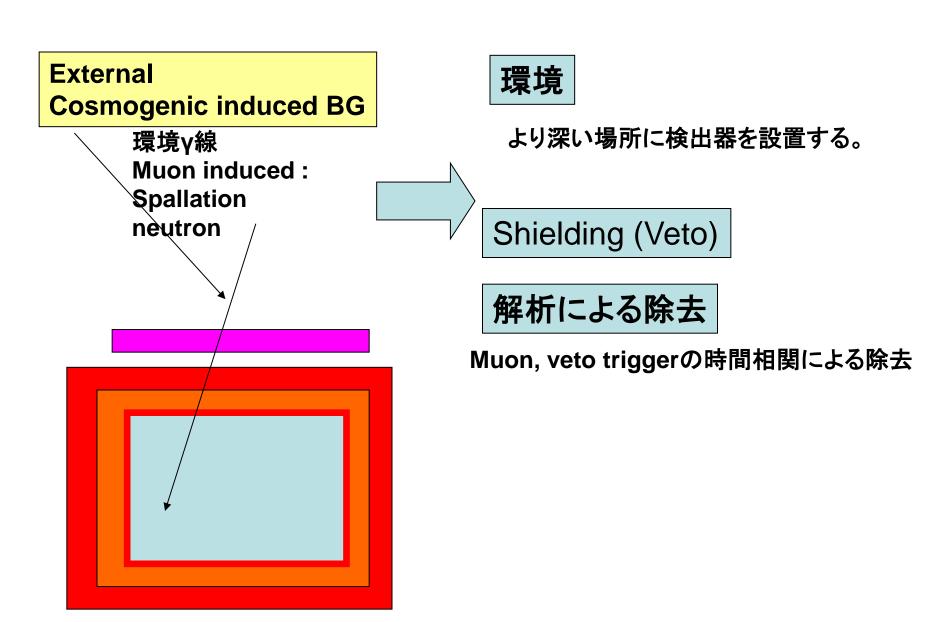
Purification of 106Cd and 116Cd

Kharkiv Institute of Physics and Technology, Ukraine

Distillation through getter filters

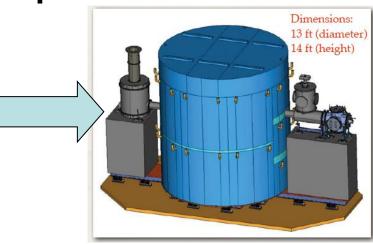
Concentration of impurities in ¹⁰⁶Cd (ppm)

result

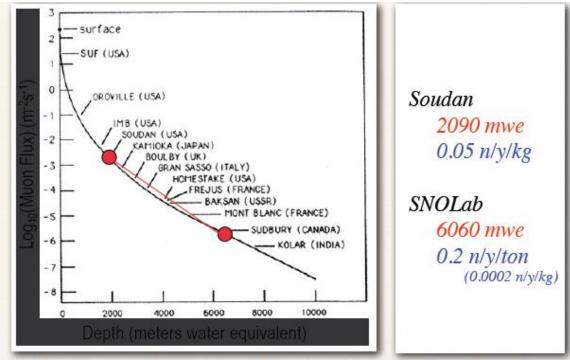

1 – crucible; 2 – initial metal; 3 – plate with holes; 4 – getter; 5 – condenser; 6 – purified metal

R.Bernabey et al., Metallofiz. Nov. Tekhn. 30 (2008) 477 G.P.Kovtun et al., Functional Materials 18 (2011) 121

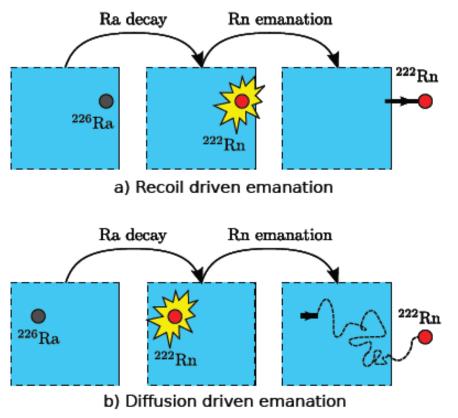
Element	Before	After
K	11*	0.04**
Ni	0.6*	< 0.2**
Cu	5*	0.5**
Fe	1.3***	0.4**
Mg	12*	<0.05**
Mn	0.1*	0.1*
Cr	9*	<0.1**
Pb	270*	<0.3**

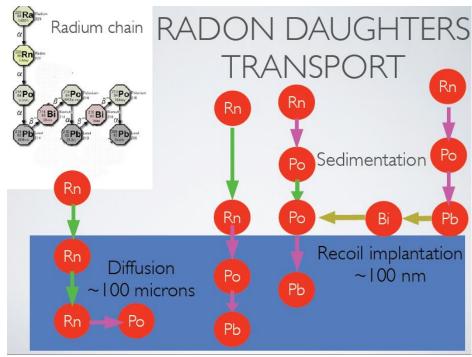

Measured by: ICP- MS *, Laser Mass Spectroscopy **, Atomic Absorption Spectroscopy ***

バックグラウンド源とその対策:環境放射能、宇宙線起源


SuperCDMS

Planned Setup


- * cryostat volume of up to 400 kg target
 - * 200 kg experiment with sensitivity of 8 x 10⁻⁴⁷ cm² at 60 GeV/c²
- * Pb/Cu shielding for external radiation
- increased PE shielding (neutrons)
- * possible neutron veto



Only need to worry about radiogenic neutrons!

Rn emanation

Surface contamination by radon

Hardy Simgen, MPIK, LRT 2013