KamLAND-Zenlz & S 最新結果と028B探索実験の展望

2022/09/10 尾崎秀義, RCNS 東北大学 @2022年秋季大会 共催シンポジウム ~地下から解き明かす宇宙の歴史と物質の進化~

マヨラナニュートリノ~レプトジェネシス~

マヨラナニュートリノがレプトン数を破ること がバリオン数の破れの起源(レプトジェネシス)

ビッグバン元素合成, CMBの観測から $n_B/n_\gamma \sim 6.1 \times 10^{-10}$

→ サハロフの3条件を満たす物理過程が必要.

サハロフの3条件

- ・バリオン数の破れ
- ・CとCPの破れ
- ・平衡状態からの離脱

3

ニュートリノを伴わない二重ベータ崩壊(0vBB)

 ・二重ベータ崩壊は限られた核種でのみ起こる<u>極めて稀</u>な現象 (⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ⁹⁶Zr, ¹⁰⁰Mo, ¹¹⁶Cd, ¹³⁰Te, ¹³⁶Xe, ¹⁵⁰Nd...).
 弱い相互作用の二次の崩壊 → 半減期が長い: T_{1/2} > 10¹⁸⁻²⁴ year.

・ニュートリノがマヨラナ粒子である場合<u>のみ</u> ニュートリノレスモード(0*νββ*)が許される.

<u>ニュートリノのマヨラナ性の直接証拠</u>

 $2\nu\beta\beta: (A,Z) \to (A,Z+2) + 2e^- + 2\nu_e$ $0\nu\beta\beta: (A,Z) \to (A,Z+2) + 2e^-$

実験では、Q値にあるモノクロピークを探す。

のルBB探索実験

実験の感度: $T_{1/2}^{0\nu} \propto \begin{cases} \sqrt{\frac{M \times t}{B \times \Delta E}} & \text{(w/B)} \end{cases}$ Mt (w/oBG)

 $M ... 崩壊核の量, t ... 観測時間, B ... BG rate, <math>\Delta E ...$ energy resolution

検出器

- ・地下に建設、シールドで囲む
- ・238U/232Thなどの少ない検出器・ソース
- ・高いQ値と高いエネルギー分解能
- ・バックグラウンドの弁別技術
 - ・トラッキングやチェレンコフリング
 - ・粒子識別(β/γ/αの識別)

観測量 マヨラナ質量 $(T_{1/2}^{0\nu})^{-1} = G^{0\nu} (g_{A,\text{eff}}/g_A)^4 |M^{0\nu}|^2 \langle m_{\beta\beta} \rangle^2$

(w/ BG)

1. 大量の二重β崩壊核 (M) 2. 低背景事象環境で(B) 3. 高エネルギー分解能な検出器(∆E)

10⁻¹ 10⁻²

- 高エネルギー分解能 0.05% σ
- ほぼBGフリーを達成(高純度+PID+シールディング)
- GERDA(完了) → LEGEND-200

Ge半導体検出器

・ PIDやチェレンコフ光技術の開発

・エネルギー分解能に課題数 $\%\sigma$

- ・大型化が容易
- すでにある低BG検出器を利用
- カムランド禅(~800 kgフェーズ) • SNO+(Teなしでデータ収集)

TPC

- ・液体:EXO-200(完了) → nEXO
- 気体:NEXT, AXEL ~100 kgフェーズ を準備中
 - エネルギー分解能 <~1%σ
 - イベントのトラッキングが可能

ボロメータ

 CUORE (~750 kgフェーズ) → CUPID • CANDLES(将来)

- 高エネルギー分解能 ~0.1%σ
- シンチレーションボロメータの開発で PID が 可能
- ・ 様々な核種を利用可能

10

10⁻²

10

 10^{-5}

 10^{-6}

Sensitive background [events/(mol yr)]

0vBB探索実験のまとめ

現在の結果

百乙太	崩壊核量	<i><m<sub>ββ>の上限</m<sub></i>
尿丁仪	[kg]	[meV]
⁴⁸ Ca	0.35	290-1600
⁸² Se	4.65	311–638
¹⁰⁰ Mo	2.26	310–540
¹³⁰ Te	2.0×10 ²	75–350
⁷⁶ Ge	3.5×10	79–180
¹³⁶ Xe	7.5×10 ²	36-156

現在は、~数百kgの崩壊核で m_{ββ} < O(10)~O(100) meVの制限.

m_{ββ}~15 meV にある逆階層構造の網羅が 直近の目標.

Kamioka Liquid Scintillator Anti-Neutrino Detector

KamLAND

Low RI: ²³⁸U ~ 5.0×10⁻¹⁸ g/g ²³²Th~1.3×10⁻¹⁷ g/g

Resolutions: ΔE ~ 6.7%/ √E(MeV) **ΔX ~13.7 cm/** √E(MeV)

Data taking for ~20 years since 2002.

カムランド禅

Duration: 2011 ~ 2015

Phase I + Phase II: $T_{1/2} > 1.07 \times 10^{26}$ yr (90% C.L.) Phys. Rev. Lett. 117, 082503

Demonstrated scalability!!

18%

Xe-LS

PC

Decane 82%

PPO 2.4 g/L Xe ~3.1 wt%

LS D12 PC

PPO

80%

20%

1.4 g/L

- - Mini-balloon Radius = 1.54 m
 - Xenon mass = 320 ~ 380 kg

Xenon-136 loaded LS

- ~ほぼton-scaleの実験を開始!!

- 745±3 kg of Xe enriched with ¹³⁶Xe by~91wt% - 蒸留純化によって極低バックグラウンド

- アクティブシールティング

- 見つかった際にはソースオフも可能

RI in XeLS: 238U ~ 1.5×10⁻¹⁷ g/g, ²³²Th~3×10⁻¹⁶ g/g

KamLAND2-Zen:

- KamLAND-Zen 800: Mini-balloon Radius = 1.90 m
 - Xenon mass = 745±3 kg
- Xenon mass ~ 1ton
- Aiming at 100% Photocoverage

Obtained the very stringent limit!

単名00フェース

ng 2017

人からのダストが汚染源!!

ashind

2018年5月 IBの導入

2018年BGの確認

とLSの純化 Requirement: ²³²Th <10⁻¹⁵ g/g Bf. purif. ²³²Th ~10⁻¹⁵ g/g Af. purif. ²³²Th ~3×10⁻¹⁶ g/g

750 kgのキセノン導入

2019年1月~ Zen800のデータ収集開始

The KamLAND-Zen collaboration et al 2021 JINST 16 P08023

Inner-ballon fabrication in class-1 cleanroom, Sendai

Welding

10x clean IB from KLZ-400

	U-238 (g/g)	Th-232 (g/g)	Volume
Zen400 Phase-II	~5×10-11	~3×10-10	16.
Zen800	~3×10 ⁻¹²	~4×10-11	30.

_eak hunt &

repairing

¹³⁷Cs and ¹³⁴Cs were not detected in the Zen800 IB.

Cutting

宇宙線起源の背景事象

C原子核破砕

禅400では主要なBG

Decay of ¹⁰C, ⁶He, ¹²B, etc

- カムランドLSで測定可能
- ・カット前の主要BGの一つ
 - ~70 events/yr/IB/ROI
- ・除去手法の改善で禅800では無 視できるBGに!! 5%以下に

Xe原子核破砕 (Long-lived)

~20 events/yr/IB/ROI

禅800で主要な背景事象

- たくさんの生成物
- ほとんどが長寿命
- ほとんどがγか陽電子を放出
- キセノン原子核の中性子捕獲で生成
- これまでの手法の応用で~75%が除去可能
- ほぼベータのみの崩壊

宇宙線起源の背景事象

 Expected event rate: 0.082 event/day/Xe-ton/ROI. ●主要な 32 核種で全体の~90% ● High neutron multiplicity, 長寿命 ●Likelihoodカットを開発。~40%が除去可能.

- 13

● 0vBB崩壊レートに対する上限値 < 10.3 evts/XeLS(30.5 m3)/yr (90% C. L.)

カムランド禅の最新結果

LL rate in ROI (2.35MeV-2.70MeV)@KamLAND site 0.111± 0.019 event/day/Xe-ton (FLUKA: 0.082±0.006 event/day/Xe-ton)

LL tag efficiency(scanned) = $40.1^{\pm 10.2}$ \approx consistent with the estimation $(42.0 \pm 8.8\%)!!$

- 禅400の結果も再解析!! - バックグラウンドとの相関を正 しく解析に取り込めた。 宇宙線によるキセノン原子核破 砕のバックグラウンドを測定!! - 前回の結果を2倍更新!

mß パの 制 限

$(T_{1/2}^{0\nu})^{-1} = G^{0\nu} (g_{A,\text{eff}}/g_A)^4 |M^{0\nu}|^2 \langle m_{\beta\beta} \rangle^2$ $g_A = 1.27$, following NMEs

New result from KLZ800 : arXiv:2203.02139

NME

Quasi-particle Random Phase Approximations

- Phys.Rev.C 102, 44303(2020)
- Phys.Rev.C 91, 024613(2015)
- Phys.Rev.C 87, 045501(2013)
- Phys.Rev.C 87, 064302(2013)
- Phys.Rev.C 97, 045503(2018)

Shell models

- hys. Rev. C 101, 044315(2020)
- Phys. Rev. C 91, 024309(2015)
- Phys. Rev. A 818, 139 (2009)

Interacting boson models

- Phys. Rev. D 102, 095016(2013)
- Phys. Rev. C 91, 034304(2015)

Energy density functional theory

- PRL 111, 142501(2013)
- Phys. Rev. C 91, 024316(2015)
- PRL 105, 252503 (2010)

カムランド禅全ての期間を合わせた結果

$T^{0v_{1/2}} > 2.3 \times 10^{26}$ year $\langle m_{\beta\beta} \rangle < 36-156 \text{ meV}$

(90% C.L.)

世界で初めてののバンド内の探索結果! 理論予想の検証も可能に!

カムランド禅800の背景事象まとめ

$0v\beta\beta$ candidate data set

2.0

— Intern

1.0 $(\text{Radius}/1.90 \text{ m})^3$

10²

 10^{0}

0.0

Solar neutrino electron scattering

(b) Long-lived Total ······ Total $(0\nu\beta\beta$ U.L.) Data ¹³⁶Xe $2\nu\beta\beta$ 10^{4} Event/0.05 MeV 0^{2} 10^{0} Visible Energy Spallation products Long-lived 11.8012.52 ^{10}C 0.000.00 ⁶He 0.220.21 137 Xe 0.340.34

Frequentist confidence limit (Wilks'):

C10 (β⁺**)**

カムランド2禅

2. State-of-the-art electronics

Purpose: Improve background suppression. Tagging long lived isotope from cosmic ray spallation.

宇宙線後の中性子捕獲事象検出効率を100%に!

Xe原子核破砕の背景事象を減少

3. Improved inner balloon

Purpose: reduce backgrounds originating from balloon.

<u>Tag ²¹⁴Bi decays.</u>

IBのバックグラウンドを除去し100% FVを達成する!!

実証実験を開始に向け準備中!!

標準階層カバーへ:CANDLES実験

 ・
 ・
 現在は、CaF₂結晶 305 kg のシンチレー ション検出器
 ・
 4⁸Caは 350 g 日本物理学会誌 vol. 77. No. 8. 2022 吉田&梅原

非常に高いQ値 4.27 MeV
濃縮技術の開発が必須
シンチレーティングボロメータの開発中

って探索されている。 発見は近いかもしれない。 カムランド禅が現在は世界最高感度で探索中。最新結 果を公表した。

まとめ

• Ov BBは、世界中で様々な検出器技術、原子核を使

・近い将来逆階層をカバーする実験が計画されている。

KamLAND(-Zen) Collaboration

