地下から解き明かす宇宙の歴史と物質の進化

Unraveling the History of the Universe and Matter Evolution with Underground Physics

地下宇宙素粒子実験のための 極低放射能技術

南野彰宏、池田一得^A、市村晃一^B、伊藤主税^C、岩田圭弘^C、 竹田敦^A、田中雅士^D 横国大、ICRR^A、東北大^B、JAEA^C、早大^D

> 日本物理学会2022年秋季大会(10pS2-8) 2022年9月10日

目次

- 放射性核種
- 地下実験室
- U系列、Th系列測定
- ・ラドン測定
- 中性子測定
- レーザーを使った測定
- •表面アルファ測定
- ・まとめ

天然放射性核種

- •天然に存在するので、あらゆる材料中に存在する。
 - ・低バックグランド環境を実現するには材料の純化や選別(スクリーニング)が必要。
- ・大きく3つに分類される。
 - ウラン系列、トリウム系列など長寿命の親核種を持つ崩壊系列
 - ⁴⁰Kのような長寿命の核種
 - ³Hや¹⁴Cのように宇宙線による核反応で生成される核種

Wikipedia

ウラン系列

- 天然放射性核種
 - ²³⁸Uの半減期 = 4.5×10⁹年
- ・娘核種に半減期が長いものがあり、 放射平衡が切れることがある。

a

放射平衡

- 崩壊系列において、親核種と娘核種の
 単位時間あたりの崩壊数が同じである
 状態。
- サンプル中の各核種の個数は寿命に比
 例する。

(例)ウラン系列

 ^{238}U : ^{226}Ra : ^{210}Pb = 200000 : 70 : 1

核種の選択的な移行によって平衡が崩れることがある。

トリウム系列

- 天然放射性核種
 - ・²³²Thの半減期 = 1.4×10¹⁰年
- ・娘核種は比較的半減期が短いので、
 ウラン系列に比べて放射平衡は切れにくい。

Wikipedia

宇宙線の原子核破砕による放射性核種

- 宇宙線(地下ではミューオン)が検出器を通過すると、原子核 破砕により様々な放射性核種が生成される。
- 核破砕により生成される放射性核種の例
 - •液体シンチレータ: ¹²C
 - ⁷Be(半減期 = 77日), ¹⁰C(29分), ¹¹C(28秒)など
 - ゲルマニウム: ^{70~76}Ge
 - ⁶⁰Co (5.3年), ⁵⁸Co (70日), ⁵⁴Mn (312日) など
 - 銅: ^{63,65}Cu
 - 60Co(5.3年), ⁵⁸Co(50日), ⁵⁴Mn(312日)など

ラドン (222 Rn)

- ウラン系列の放射性希ガス(気体)
- •半減期3.8日
- 容器などの検出器材料から湧き出し、
 検出器中心部に侵入後、崩壊する。

地下実験室のよい点

- 宇宙線μが地上の10⁻⁵倍以下
 - 宇宙線μの核破砕による放射性核種の生成が抑えられる。
 - 宇宙線μによる核破砕起源の環境中性子が少ない。

地下実験室の悪い点

・空気中ラドン濃度が地上の10倍以上で季節変動

- 検出器(実験室)をラドンから隔離する必要がある。
 - ラドンシール材(マインガード、EVOHシートなど)で覆う。

Concentration Bq/m

ラドンフリーな空気や窒素で満たす。

神岡地下と地上のラドン濃度「Bq/m³]

	Winter	Spring	Summer	Fall
地下	281 ± 94	1440 ± 765	2418 ± 139	1031 ± 915
地上	27 ± 15	36 ± 20	98 ± 23	46 ± 29
 G. Pronost, 宇宙素粒子若手の会, 2017年10月17日				

測定するもの

- U系列、Th系列
- ・ ラドン (²²²Rn)
- 環境中性子

U系列、Th系列測定

- 高純度ゲルマニウム検出器
 - サンプル中の放射性核種からのガンマ線を測定する。
 - 0(1) keVの高いエネルギー分解能を持ち、核種を特定できる。
 - 検出器外部からのガンマ線をシールドで遮蔽する。

高純度ゲルマニウム検出器による測定

低バックグランドのゲルマニウム検出器 の開発

- ・相対効率*80%の低バックグランド仕様P型ゲルマニウム検出器を ミリオンテクノロジーズ(フランス)と共同で開発した。
 - 候補材料中の放射性核子量を日本で測定。
- •宇宙線による放射化を低減するために船でフランスから輸送。

低バックグランドのゲルマニウム検出器 の開発 詳細は鈴木芹奈氏の講演(7pA125-12)

•低バックグランドを実現。

検出器の種類・時期		400-2700 keV [counts/day/kg]
イタリアGeMPI(世界聶	 己 高)	30
神岡1号		119
神岡2号(2021年12月)	開発した	143
神岡2号(2022年7月)	検出器	102

バックグランドをfactor 4落とすと 世界一を名乗れる。

低バックグランドのゲルマニウム検出器 の開発

詳細は鈴木芹奈氏の講演(7pA125-12)

縦軸:Counts/day/kg/keV 横軸:Energy[keV]

宇宙線起源のバックグランド(割合=2022年7月測定/2021年12月測定)

核種	⁵⁷ Co	対消滅γ線	⁵⁸ Co	⁵⁴ Mn	00 ⁰⁰	00 ⁰⁰
エネルギー[keV]	122	511	811	835	1173	1333
半減期	272日		70日	312日	5.27年	5.27年
割合	0.87±0.51	0.94 ± 0.27	0.11±0.14	0.77±0.61	1.25±0.44	0.62 ± 0.30

低バックグランドのゲルマニウム検出器 の開発 ^{詳細は鈴木芹奈氏の講演(7pA125-12)}

- バックグランド源の同定
 - ・材料中の放射性核子量とシミュレーション(Geant4)から見積もる。

AIエンドキャップと 低BG鉛シールドからの寄与は、 500keV以下のバックグランドの約36%

- 他の検出器材料については見積もり中
- バックグランド源を同定し、さらなる 低バックグラウンド化を進める。

※低BG鉛シールドのスペクトルの上に AIエンドキャップのスペクトルを足して描画¹⁷

硫酸ガドリニウム・8水和物($Gd_2(SO_4)_3$)のスクリーニング

- Super-Kamiokandeに溶解させた硫酸ガドリニウム
 - [•2020年:13 ton] •2022年:26 ton]
- SK-Gd実験の要求

Chain	Isotope	Criterion [mBq/kg]	Physics target
23811	$^{238}\mathrm{U}$	< 5	SRN
0	226 Ra	< 0.5	Solar
232mh	232 Th	< 0.05	Solar
11	228 Ra	< 0.05	Solar

- 核子毎に感度を出しやすい手法で測定
 - ²³⁸U、²³²Th: 誘導結合プラズマ質量分析法(ICP-MS)
 - •他の核子:ゲルマニウム検出器

ゲルマニウム検出器による硫酸ガドリニ ウムのスクリーニング ^{詳細は細川佳志氏の講演(70A125-1)} ^{池田-得氏の講演(10pS2-6)}

- •2022年にSK-Gdに溶解した硫酸ガドリニウム26 tonは37ロット に分かれて納入された。
 - ・ゲルマニウム検出器測定は、神岡1号と2号(開発したもの)の2台体制 で34ロットを測定。残りの3ロットはヨーロッパの共同研究者が測定。
 - ICP-MS測定と合わせて、SK-Gdに溶解させる前に全37ロットのスクリー ニングを完了できた。

各ロットの測定に 20日必要

ラドン (²²²Rn) 測定

- •静電捕集法
 - ラドン娘核である²¹⁸Po、²¹⁴Pb、²¹⁴Biが正に帯電しやすいことを利用し、 電場で半導体検出器(PIN型 Photo Diode)まで輸送後、娘核のα崩壊 を観測する。

硫酸ガドリニウム水のラドン(²²²Rn)濃度 測定

- •目的
 - SK-Gd: 太陽ニュートリノ観測で²²²Rn娘核の²¹⁴Biのβ崩壊が問題。
 - XENONnt: 中性子veto水チェレンコフ検出器のdead timeに²²²Rnが影響。
- 要求感度
 - 連続測定で<1 mBq/m³
- ・開発の方針
 - ・既存の連続測定型水ラドン検出器*を改良する。

* C. Mitsuda et al., NIMA 497 (2003) 414.

硫酸ガドリニウム水ラドン検出器

低バックグランド PIN Photo Diodo 80L ラドン検出器 (-2000 V) 膜脱気 モジュール* ~I L/min

詳細は竹田敦氏の講演(7aA125-11)

膜脱気モジュールが主なバックグランド源

 ハウジングを樹脂から 電解研磨したステンレ スへ変更

*液体は透過せず気体だけが透過する膜。液体を通し、溶残ガスを取り出す。

硫酸ガドリニウム水ラドン検出器

改良により要求感度である<1 mBq/m³を達成。

・SK-GdとXENONnTでの運用を開始した。

中性子

- 地下宇宙素粒子実験のバックグランド源
 - 標的物質との弾性散乱→宇宙暗黒物質直接探索
 - 標的物質との非弾性散乱→ニュートリノを伴わない二重β崩壊探索
- ・地下実験室での主な中性子発生源
 - ・岩盤や検出器材料とそれに含まれるウラン系列、トリウム系列の崩壊 で発生するα線との(α,n)反応。

地下実験室の環境中性子測定

- 中性子測定コンソーシアム
 - ・2015年に若手を中心に立ち上げ。
 - 複数の実験グループで協力

・本研究では2種類の検出器を開発

検出器	標的原子核	測定に使う反応	感度領域
³ He比例計数管	³ He	(n,p)反応	熱中性子
有機液体シンチレーター	H(主に)	弾性散乱	高速中性子

熱中性子: 運動エネルギーが0.5 eV以下 高速中性子: 運動エネルギーが1 MeV以上

³He比例計数管

- 3 He + n \rightarrow p + T + 0.765 MeV
- 熱中性子に高い感度
- 高速中性子は減速材(ポリエチレンなど)で減速後に測定。

³He比例係数管による地下環境中性子測定 ^{詳細は天内昭吾氏の講演(70A442-8)}

•神岡地下実験室Lab-B、2021年7月~2022年8月

27

地下環境中性子測定: シミュレーション による見積もり ^{詳細は天内昭吾氏の講演(70A442-8)}

先行研究の手法 (K.Mizukoshi et al., PTEP (2018) 123COL.)

 中性子の発生: 岩盤中の(α,n)反応 → NeuCBOT*
 岩盤から実験室への中性子の輸送 → Geant4
 各中性子のスペクトラムに対する³He比例計数管の応答 → Geant4

岩盤中の 水素(質量比)	0%	3%
R _A (熱中性子)	3567	10792
R _B (高速中性子)	3980	2484
R_A/R_B	0.9	4.4

③ ³He比例計数管の応答

岩盤中の水が多い→熱中性子が多い

* TALYS(www.tendl.web.psci.ch)の計算結果を利用した (α,n)反応シミュレーター

地下環境中性子測定: KAGRAトンネル排 水量との比較 ^{詳細は天内昭吾氏の講演 (70A442-8)}

- 長期観測を継続し、複数年に渡りカウントレートを調査する。
- エネルギースペクトルを直接測定できる液体シンチレータ検出器と同時観測を行う。
- 測定を行ったLab-B付近のトンネル排水量やラドン濃度との相関を調べる。

液体シンチレータ*検出器

詳細は岩澤広大氏の講演(7aA442-9)

- 中性子に反跳された陽子を検出。
- ・波形弁別によりγ線、電子は除 去できるがα線は難しい。

²⁵²Cf中性子線源Run

中性子

 γ

4000

Total [keVee]

3000

Slow/Tota

0.4

0.2

0

-0.2

1000

2000

900

800

700

600

500 400

300

200

100

0

5000

Slow/Tota

* J. of Phys. Conf. Series 469 (2013) 012007.

31

液体シンチレータ検出器のα線バックグ ランド 詳細は岩澤広大氏の講演(7aA442-9)

α線バックグランドを²¹⁴Bi-²¹⁴Po
 の遅延同時計測で評価

²¹⁴Poの半減期が短いためΔ+で強力に事象選択可

Bi-Po α線レートの時間変動

液体シンチレータ検出器のバックグランドの低減に向けて 詳細は岩澤広大氏の講演 (70A442-9)

期待される環境中性子スペクトラムと

• 検出器の低バックグランド化

- ステンレス容器の表面処理
- 液体シンチレータの純化
- 窒素バブリングによる²²²Rnの低減
- ・解析で低減
 - γ線のパイルアップによる偽事象
 - ・遅い遅延同時計測:²²²Rn-²¹⁸Poの *α*とα (²¹⁸Poの半減期 3.1分)

レーザー共鳴イオン化を使った測定

- レーザー共鳴イオン化質量分析法
 - レーザーで測定対象の核子のみをイオン化し質量分析。
 - アルゴンやキセノン中のクリプトン含有量を測定。

レーザー誘起発光分光

詳細は岩田圭弘氏の講演(7aA125-2)

- レーザー誘起発光分光
 - SK-Gd実験でチェレンコフ光が硫酸ガドリニウム水中のGd³⁺イオンを励起。その後、励起されたGd³⁺が寿命O(1)msで312 nmの発光。
 - •レーザーでGd³⁺を励起し、その発光量、寿命を確認。

小林兼行、第6回極低放射能技術研究会(2020年6月4日)

表面アルファ線測定

 ウラン系列の²¹⁰Pbの含有量と表面か バルクのどちらに存在するかを測定 できる。

表面アルファ線検出器

- XIA Ultra-Lo-1800
 - XMASS実験で開発
 - 感度 10⁻⁴ α/cm²/hr

• AICHAM*

- ・NEWAGE実験のスピンオフ
- ・ 発生場所を同定できる。
- 感度 10⁻³ α/cm²/hr

* 詳細は伊藤博士氏の講演(6aP562-8)

NIM A 953 (2020) 163050. J. Phys.: Conf. Ser. 2156 (2021) 012176.

まとめ

- 今回報告したのは極低放射能技術開発のごく一部。
- (私見) 極低放射能技術開発の魅力。
 - •比較的自由にアイデアを試せる。
 - 改良に対する結果が短いタイムスパンで見れて面白い。
 - ・ 幅広い分野の人と知り合える。
- ・地下宇宙素粒子実験に欠かせない基礎研究なので、楽しみながら進めていきたい。

バックアップ

天然放射性核種

- アクチニウム系列
 - 天然放射性核種(²³⁵U半減期 7.0×10⁸年)

235 92 7.04e+8 Years Uranium ²³¹Pa 3.276e+4 Protactinium Years 231**Th** 90**Th** 25.52 Hours ²²⁷Th 18.68 Days Thorium ²²⁷ AC 21.772 Years Actinium ²²³ Ra 11.43 Days Radium ²²³Fr 22.0 Francium ²¹⁹ Rn 3.96 Seconds Radon ²¹⁹At ²¹⁵At 56 1e-4 Seconds Seconde Astatine ²¹¹84**PO** ²¹⁵ **PO** 1.781e-3 0.516 Seconds Seconds Polonium ²¹⁵83**Bi** ²¹¹83**Bi** 2.14 Minutes Minutes Bismuth ²¹¹**Pb** ²⁰⁷ Pb Actinides 36.1 Minutes Stable Alkali Metals Lead Alkaline Earth Metals Halogens 207 81 Metalloids Noble Gases 4.77 Minutes Post Transistion Metals Thallium Transition Metals

Wikipedia

天然放射性核種

• ⁴⁰K

• 天然放射性核種(半減期=1.277×10⁹年)

神岡地下坑道のラドン濃度

