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Figure 1. Comoving SNR (all types of luminous core collapses including Type II
and Type Ibc) as a function of redshift. The SNR predicted from the cosmic SFR
fit and its supporting data (Hopkins & Beacom 2006), as well as that predicted
from the mean of the local SFR measurements, are plotted and labeled. The fit to
the measured cosmic SNR, with a fixed slope of (1+z)3.4 taken from the cosmic
SFR, is shown with the uncertainty band from the LOSS measurement. The
predicted and measured cosmic SNRs are consistently discrepant by a factor of
∼2: the supernova rate problem. However, rates from SN catalogs in the very
local volume do not show such a large discrepancy (see Figure 3).
(A color version of this figure is available in the online journal.)

SNRs (Cappellaro et al. 1999; Dahlen et al. 2004; Cappellaro
et al. 2005) were somewhat lower than those predicted from
the SFR. Similar conclusions were reached by Mannucci et al.
(2007) and Botticella et al. (2008).

In recent years, measurements of the cosmic SFR and
cosmic SNR have rapidly improved. The cosmic SFR has
been measured using multiple indicators by many competing
groups. The accuracy and precision of the cosmic SFR has
been documented (e.g., Hopkins & Beacom 2006) and are
supported by recent data (e.g., Pascale et al. 2009; Rujopakarn
et al. 2010; Ly et al. 2011; Bothwell et al. 2011). The Lick
Observatory Supernova Search (LOSS) has recently published
the best measurement of the cosmic SNR at low redshifts, using
CC SNe collected over many years of systematically surveying
galaxies within ∼200 Mpc (Leaman et al. 2011; Li et al.
2011a, 2011b; Maoz et al. 2011). The Supernova Legacy Survey
(SNLS) has published the most precise SNR measurement at
higher redshifts, using a large sample of CC SNe collected in
their extensive rolling search of four deep fields (Bazin et al.
2009).

Based on the latest data, it has become clear that the measured
cosmic SFR and the measured cosmic SNR both increase by
approximately an order of magnitude between redshift 0 and
1, confirming our expectation that the progenitors of CC SNe
are short-lived massive stars (e.g., Bazin et al. 2009; Li et al.
2011a). On the other hand, the comparison of the normalizations
of the latest SFR and SNR data has been left for future work. We
perform this here for the first time. As illustrated in Figure 1,
the SNR predicted from the cosmic SFR is a factor of ∼2 larger
than the cosmic SNR measured by SN surveys; we term this
normalization discrepancy the “supernova rate problem.” Both
the predicted and measured SNRs are of optically luminous

CC SNe, so the two can be directly compared. The lines in
Figure 1 are fits to the SFR and SNR data, respectively.8 The
discrepancy persists over all redshifts where SNR measurements
are available.9

The nominal uncertainties on the fits (shaded bands) are
smaller than the normalization discrepancy, and the significance
of the discrepancy is at the ∼2σ level. At high redshift, where the
uncertainties of the SNR measurements are largest, the statistical
significance is weaker. However, it is remarkable how well
the cosmic SNR measurements adhere to the expected cosmic
trend—much better than their uncertainties would suggest.
Indeed, the measurements of Dahlen et al. (2004) have been
supported by recent unpublished results and with reduced
uncertainties (Dahlen et al. 2010). We therefore consider the
fits to be a good representation, i.e., the supernova rate problem
persists over a wide redshift range. We systematically examine
resolutions to the supernova rate problem, exploring whether
the cosmic SNR predicted from the cosmic SFR is too large, or
whether the measurements underestimate the true cosmic SNR,
or a combination of both.

In Section 2, we describe the predicted and measured cosmic
SNRs in detail and substantiate the discrepancy. In Section 3, we
discuss possible causes. In Section 4, we discuss our results and
cautions. We summarize and discuss implications in Section 5.
Throughout, we adopt the standard ΛCDM cosmology with
Ωm = 0.3, ΩΛ = 0.7, and H0 = 73 km s−1 Mpc−1.

2. NORMALIZATION OF THE COSMIC SNR

The cosmic SNR is calculated from the cosmic SFR using
knowledge of the efficiency of forming CC SNe. The most
recent SFR is traced by the most massive stars that have the
shortest lifetimes. The primary indicators of massive stars—Hα,
UV, FIR, and radio—are routinely used, with dust corrections
where necessary, to study the populations of massive stars.
However, since the total SFR is dominated by stars with
smaller masses, the SFR derived from massive stars must be
scaled upward according to the initial mass function (IMF); for
example, for a given massive stellar population, an IMF that
is more steeply falling with mass will yield a larger total SFR
compared to a shallower IMF. The scaling is done with the use
of calibration factors derived from stellar population synthesis
codes that calculate the radiative output from a population of
stars following an assumed IMF (see, e.g., Kennicutt 1998).

We adopt the dust-corrected SFR compilation of Hopkins &
Beacom (2006). Their data are well fit by a smoothed broken
power law of the form (Yüksel et al. 2008)

ρ̇∗(z) = ρ̇0

[

(1 + z)aη +
(

1 + z

B

)bη

+
(

1 + z

C

)cη
]1/η

, (1)

where B = (1 + z1)1−a/b, C = (1 + z1)(b−a)/c(1 + z2)1−b/c. We
adopt ρ̇0 = 0.016 h73 M$ Mpc−3 yr−1 for the cosmic SFR at
z = 0, as well as the parameterization a = 3.4, b = −0.3,
c = −3.5, z1 = 1, z2 = 4, and η = −10. These choices are
applicable for the Salpeter A IMF, which is a modified Salpeter
IMF with a turnover below 1 M$ (Baldry & Glazebrook 2003).
The scaling from a Salpeter IMF is ≈0.77. The 1σ uncertainty on

8 Technically, the SNR line shown is not a fit, but is a conservative estimate
based on the SNR measurement of LOSS; see Section 2.
9 However, in the local !25 Mpc volume, the SNR derived from SN catalogs
does not show such a large discrepancy, supporting earlier claims that the true
cosmic SNR is as large as predicted (e.g., Horiuchi et al. 2009; Beacom 2010).
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Figure 1. HST images of the region surrounding N6946-BH1.
The top row shows the WFPC2 F606W (left) and F814 (right)
progenitor images. The middle row shows the corresponding 2015
WFC3 images and the bottom row shows WFC3/IR F110W (left)
and F160W (right) images. The circles have a radius of 100. The
progenitor has dramatically faded in the optical but there is still
faint near-IR emission.

3 SED MODELING

We model the SED to constrain the physical properties (i.e.,
luminosity, temperature, mass, and recent mass loss) of the
progenitor, its outburst, and the late-time source. We will
use the results of these models to discuss whether the pro-
genitor survived the outburst and whether a failed super-
nova or some other phenomenon (e.g., stellar merger or erup-
tive mass loss) best explains the data.

Following the methods in Adams & Kochanek (2015)
and Adams et al. (2016), we model the SED of the progen-
itor, its outburst, and the late-time source using the dust
radiative transfer code dusty (Ivezic & Elitzur 1997; Ivezic
et al. 1999; Elitzur & Ivezić 2001). We use stellar models
from Castelli & Kurucz (2004) for stars with solar metal-
licity and e↵ective temperatures between 3500 and 50000 K
and revert to blackbody models when attempting to fit tem-
peratures below 3500 K. We employ a Markov Chain Monte
Carlo (MCMC) wrapper around dusty to find best-fit mod-
els and allowed parameter ranges. We adopt minimum pho-
tometric uncertainties of 10% (to account for uncertainty in
distance and metallicity and any systematic problems in the
models). We use silicate dust from Draine & Lee (1984) with

a standard MRN grain size distribution (dn/da / a�3.5 with
0.005 µm < a < 0.25 µm; Mathis et al. 1977).

The IR variability of the progenitor as well as the post-
outburst IR emission could be indicative of dust formation.
We consider two modes of mass loss: the ejection of a dusty
shell and a steady-state wind. We assume that all dust for-
mation occurs in the outflowing material once it cools to
the dust formation temperature, Tf ' 1500 K. In the shell
model, as the shell continues to expand beyond the dust for-
mation radius, Rf , the optical depth, ⌧ , decreases, asymp-
toting at late times to ⌧ / t�2, where t is the elapsed time
since the ejection of the shell. For a thin shell, the mass of
the ejecta, Mej, corresponding to a given optical depth is
given by

Mej =
4⇡v2ejt

2⌧V,tot(t)

V
, (1)

where vej is the velocity of the ejected shell and V is the
opacity of the dust at V band. As noted in Tables 2, 3, &
4, for the shell models we generally fix the ratio between
the inner and outer edges of the dust shell, Rout/Rin, to 2.
The models where we allow Rout/Rin to vary show that the
shell thickness is relatively unconstrained by the data and
has little e↵ect on estimates of the other model properties.

For a set of post-outburst shell models (labeled as “with
dL/dt” in Table 4) we also include constraints on the late-
time variability of the source. As discussed in Adams &
Kochanek (2015), the luminosity of a surviving source of
constant intrinsic luminosity is constrained by the variabil-
ity, dLf,obs/dt, and optical depth of the source in that filter,
f , according to

L⇤,f ' 1
2

t
⌧f,e↵

⇣
dLf,obs

dt

⌘
e⌧f,eff . (2)

We impose the variability constraints, dLobs/dt, from Table
1 on the models by adding contributions of

�2
f =

✓
dLf,obs/dt� dLf,mod/dt

�dLf,obs/dt

◆2

(3)

for each constrained filter, f, where the model variability,
dLf,mod/dt, is

dLf,mod

dt
=

2Lf⌧f,e↵
t

(4)

(see Adams et al. 2016). We also consider a set of models
where we compare the evolution of the IR flux to the ex-
pansion (and cooling) of the dust shell. For these models we
compute the �2 of a given MCMC step for the latest photo-
metric constraints. We infer a shell expansion velocity, vej,
based on the elapsed time, t, and inner shell edge, Rin, of
the model. We then extrapolate the model back to an earlier
post-outburst epoch with SST observations using this vej to
find the appropriate Rin for the earlier epoch, generating a
new dusty model with the optical depth, ⌧ , expected from
a ⌧ / t�2 scaling, and include the �2 for this extrapolated
model in the MCMC step.

For the wind scenario, the inner edge of the dust is set
by the formation radius Rf and we allow the thickness of
the dust ‘shell’ to vary. Since the optical depth of a wind
(or shell) is dominated by the inner edge, the results are
usually insensitive to the thickness Rout/Rin. The mass-loss
rate needed to produce a given optical depth is

ν

星形成率から示唆されるSN率と
実際の観測に差がある.
Horiuchi+’11
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過去のSNが放出したニュートリノの重ね合わせ（背景ニュートリノ）.
DSNB from extensive core-collapse simulations 9

For the cosmic history of the core-collapse rate, we
adopt those predicted from the comoving star formation rate
(e.g., Hopkins & Beacom 2006), which yields a robust es-
timate for the core-collapse rate regardless of whether the
collapse generates a luminous supernova or not (Horiuchi
et al. 2011). The scaling from the star formation rate to the
core-collapse rate is,

RCC(z) = €⇢⇤(z)
Ø

100

8
 (M)dMØ

100

0.1 M (M)dM
, (15)

where ⇢⇤(z) is the cosmic star formation rate in units
M� yr

�1
Mpc

�3, which is estimated by various priors (e.g.,
far-infrared, ultra-violet, emission lines, and others, see, e.g.,
Kennicutt 1998) as,

€⇢⇤(z) = fxLx(z) , (16)

where Lx is the observed luminosity density of the priors
and fx is the conversion factor to the star formation rate.

The DSNB prediction depends weakly on the IMF
shape. The IMF is one of the most important inputs deter-
mining the values of fx , with variations of close to a factor
⇠ 2 (Kennicutt 1998; Hopkins 2004; Horiuchi et al. 2013).
However, this is nearly fully cancelled by the ratio of inte-
grals in Eq. (15). This is because the massive stars used as
proxies for star formation are close in mass range to core-
collapse progenitors. As a result, the product changes only
at the level of a few percent.

3.4 Neutrino mixing and DSNB detection

The neutrinos that are emitted from the neutrinospheres
undergo oscillations during their propagation to a terrestrial
detector. The oscillation we implement is that of matter-
induced MSW. This results in a ⌫̄e survival probability of
cos

2 ✓12 for the normal mass hierarchy (NH), where ✓12 is
the solar mixing angle and sin

2 ✓12 ' 0.3, and a survival
probability of ⇡ 0 for inverted mass hierarchy (IH) (Dighe &
Smirnov 2000). The terrestrial flux of ⌫̄e is therefore given
by,

(NH) Fobs

⌫̄e
' cos

2 ✓12F⌫̄e + sin
2 ✓12F⌫x , (17)

(IH) Fobs

⌫̄e
' F⌫x . (18)

Additional flavor mixing can be induced by the coherent
neutrino-neutrino forward scattering potential. Although a
complete picture of self-induced flavor conversions under
multi-angle treatment is still missing (for a review, see, e.g.,
Duan et al. 2010; Mirizzi et al. 2016), the most uncertain
epoch is the accretion phase (see, e.g., Chakraborty et al.
2011a), which powers of order tens of percent of the neu-
trino flux. Self-induced e↵ects are not important during the
earlier neutronization burst because of the large excess of
⌫e due to core deleptonization (Hannestad et al. 2006), and
is also less relevant during the later cooling phase when the
di↵erent neutrino flavors tend towards similar spectra. Lu-
nardini & Tamborra (2012) investigated the e↵ect of self-
induced flavor conversions on the time-integrated neutrino
emission and found that indeed it is subdominant, a↵ecting
at some O(10)% compared to the MSW e↵ect (see also, e.g.,
Chakraborty et al. 2008). We therefore consider only MSW
e↵ects, but bear in mind that additional oscillation e↵ects
may occur at a subdominant level.

For detection we consider the Super-Kamiokande (SK)
and Hyper-Kamiokande (HK) water Cherenkov detectors,
with 22.5 kton and 374 kton inner volumes, respectively.
The main backgrounds above ⇠ 10 MeV energies are asso-
ciated with atmospheric neutrinos: (1) atmospheric ⌫̄e, (2)
charge-current scattering of atmospheric ⌫µ and ⌫̄µ that pro-
duce sub-Cherenkov muons (so-called“invisible muons”), (3)
atmospheric neutral current scattering, and (4) neutral cur-
rent inelastic scattering with pion generation (see, e.g., Bays
et al. 2012, and references therein). SK is currently undergo-
ing preparations to upgrade its tank with gadolinium salt,
which would improve signal/background di↵erentiation by
a delayed neutron-tagging of inverse-� events (Beacom &
Vagins 2004). This would be particularly e↵ective in reduc-
ing invisible muons, which remain the dominant background
for DSNB searches (Bays et al. 2012). It is not determined
whether the technique will be applied in HK, or whether tag-
ging using captures on protons will be improved. We there-
fore conservatively adopt lepton detection enery ranges of
10–26 MeV and 18–26 MeV for SK and HK, respectively.
The cross section for the inverse-� decay interaction in wa-
ter is accurately known (Vogel & Beacom 1999; Strumia &
Vissani 2003). Other large-volume detectors such as JUNO,
DUNE, and other proposals o↵er opportunities for comple-
mentary information (Cocco et al. 2004; Mollenberg et al.
2015; Wei et al. 2017), but the expected event rates are lower
than in HK and we do not consider them in this work.

In Figures 7 and 8 we show the total predicted DSNB
event rates as functions of the critical compactness, ⇠2.5,crit.
As expected, decreasing ⇠2.5,crit increases the predicted
DSNB event rate because of the larger contribution from
failed explosions especially in the higher energy range (see
Figure 6).

In Figure 7 we show some of the important model pre-
diction uncertainties. For this purpose we consider full ⌫̄e
survival (shown in blue) and no survival (i.e., ⌫̄obs

e = ⌫x ,
shown in black). We assume the HK detector. The uncer-
tainty bands due to uncertain cosmic core-collapse rate and
the uncertain ⌫x shape parameter between 1.0 to 4.0 are
large, but both are expected to be dramatically reduced
with more observational and theoretical studies in the near
future. We also show the e↵ects of varying the IMF slope
between �2.15 to �2.45. The IMF a↵ects the DSNB via dif-
ferent weights to progenitors, as well as through di↵erent
core-collapse rates, but the combined e↵ects on the DSNB
are small. As a separate prediction curve (not a band) we
also show the results of adopting the pre-supernova progen-
itor models of Woosley & Heger (2007). The Woosley &
Heger (2007) progenitors have higher compactness compared
to WHW02, which results in ⇠ 10% larger DSNB event rates.
Finally, we show the results based on the 18 core-collapse
models of Summa et al. (2016), which are ⇠ 60% larger than
those based on Nakamura et al. (2015). The simulations of
Summa et al. (2016) typically predict larger ⌫̄e total energet-
ics, higher mean energies, and smaller shape parameters (see
Figure 4). Although the di↵erences are small, their combined
e↵ects result in a noticeable e↵ect for the DSNB event rates,
which are biased towards the high-energy portion of the neu-
trino emission. The large di↵erence highlights future needs
of improved simulation suites extending to late times. How-
ever, we should caution that we have taken more assump-
tions in our treatment of the Summa et al. (2016) models,

MNRAS 000, 1–14 (2016)

重力崩壊（CCSN+BH）のイベント率

１イベントあたりの平均ニュートリノスペクトル

dN/dE’ = dN/dE(1+z)

Diffuse SN Neutrino Background (DSNB)

超新星ニュートリノの直接観測：
様々に決定的な情報をもたらすがイベント率が低い.

超新星背景ニュートリノ：
いったん検出器感度が検出基準に達すれば
継続的に観測可能となる.

8 S. Horiuchi et al.
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Figure 5. Same as Figure 3 but for failed explosions. Note the
di↵erent ranges in both horizontal and vertical axes. From small
to large compactness, points represent the solar metal 40M�
of WHW02, solar metal 25M� of WHW02, zero metal 33M�
of WHW02, zero metal 35M� of WHW02, solar metal 40M�
of WW95, solar metal 40M� of WW95 updated in Heger et
al. (2001), and low metal 30M� of Nakazato et al. (2013). Spec-
tral shape parameter are shown only when relevant information
was available. Straight lines are linear fits through the spectral
parameters.

that large compactness is conducive to black hole formation
(e.g., O’Connor & Ott 2011). In general, the precise value
of ⇠2.5,crit will depend on the explosion mechanism and their
implementation. For the neutrino mechanism, current imple-
mentations suggest values between 0.2 and 0.6 (O’Connor &
Ott 2011; Ugliano et al. 2012; Horiuchi et al. 2014; Pejcha &
Thompson 2015; Ertl et al. 2016). However, ongoing e↵orts
are expected to update predictions in the future. We thus
treat ⇠2.5,crit as a parameter of interest that is predicted by
simulations and to be tested by future observational data.
For the neutrino emission of failed explosions, we adopt the
functional form equation (12) with neutrino spectral param-
eters predicted by black hole forming simulations (Figure 5).

The predicted weighted average neutrino spectra includ-
ing contributions from collapse to black holes are shown as
non-solid lines in Figure 6. Four values of ⇠2.5,crit = 0.1,
0.2, 0.3, and 0.43 are shown. Based on the solar metallic-
ity progenitors of WHW02, these critical values correspond
to failed explosion fractions (the number of failed explosions
over the total number of massive stars in the mass range
8–100M�) of 45%, 17%, 5%, and 0%, respectively. Note that
the largest compactness in the WHW02 solar metallicity
stellar suite is ⇠2.5 ⇡ 0.43. Therefore, values of ⇠2.5,crit above
0.43 means no contribution from collapse to black holes in
our calculations.

The resulting spectra are the combined e↵ect of failed
explosions having lower neutrino total energies and higher
mean energies than the 2D counterparts. The smaller the

critical compactness, the larger the contribution from failed
explosions, and thus the more prominent is the high-energy
component of the mean neutrino spectrum. Adopting a
shallower (steeper) IMF increases (decreases) the empha-
sis on the most massive stars. For example, compared to the
Salpeter IMF, a slope of �2.15 implies ⇠ 30% larger repre-
sentation of the most massive stars M > 40M�. However,
the most massive stars are rare and the increase is mod-
est in absolute terms. Even for the shallow �2.15 slope and
largest failed fraction (⇠2.5,crit = 0.1), the weighted average
neutrino spectrum is only a↵ected at the few percent level
below neutrino ⇠ 30 MeV and ⇠ 15% above ⇠ 60 MeV.

The core compactness of massive stars has recently been
carefully investigated by Sukhbold & Woosley (2014) using
1D stellar evolution codes. They show that quantitatively,
the compactness of a star depends on a range of inputs,
including not only the initial stellar mass and metallicity,
but also the way mass loss and convection are handled in
the code, as well as the nuclear microphysics implementa-
tion. However, the authors also show that qualitatively the
compactness robustly follows a non-monotonic distribution
in ZAMS mass, with a peak around ⇠ 20M�. This is the
result of the interplay of the carbon-burning shell with the
carbon-depleted core, and later, oxygen-burning shell with
the oxygen-depleted core. Nevertheless, the position of the
peak has an uncertainty of some ⇠ 1M� in mass (Sukhbold
& Woosley 2014). To explore other currently-available suites
of pre-supernova progenitor models, we determine the av-
erage neutrino flux employing the pre-supernova models of
Woosley & Heger (2007). This suite of progenitors in general
has similar or higher compactness compared to WHW02,
reaching a peak compactness of ⇠2.5 ⇡ 0.54 compared to 0.43

for WHW02. Also, a second peak in compactness at ⇠ 40M�
is evident, in addition to the peak around ⇠ 20M� that is
seen in WHW02 and Sukhbold & Woosley (2014). These fea-
tures manifest as a harder predicted average neutrino spec-
tra, because higher compactness yields higher neutrino lu-
minosities and mean energies (Figure 3). In Section 3.4, we
show how this a↵ects the DSNB event rate prediction.

3.3 DSNB flux prediction

The DSNB is determined by integrating the cosmic history
of the comoving core-collapse rate, RCC (z), by the mean neu-
trino spectrum per core collapse, dN/dE, appropriately red-
shifted, over cosmic time (see, e.g., Beacom 2010, for a recent
review),

d�
dE
= c

π
RCC(z)

dN
dE 0 (1 + z)

���� dt
dz

���� dz , (14)

where E 0 = E(1+z) and |dz/dt | = H0(1+z)[⌦m(1+z)3+⌦⇤]1/2.
We include contributions out to a redshift of 5, which is
su�ciently large to include the majority of the DSNB flux
(Ando & Sato 2004) for ⇠ 10 MeV neutrino energy threshold.

For the cosmic history of the core-collapse rate, we
adopt those predicted from the comoving star formation rate
(e.g., Hopkins & Beacom 2006), which yields a robust es-
timate for the core-collapse rate regardless of whether the
collapse generates a luminous supernova or not (Horiuchi
et al. 2011). The scaling from the star formation rate to the

MNRAS 000, 1–14 (2016)
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Figure 5. Same as Figure 3 but for failed explosions. Note the
di↵erent ranges in both horizontal and vertical axes. From small
to large compactness, points represent the solar metal 40M�
of WHW02, solar metal 25M� of WHW02, zero metal 33M�
of WHW02, zero metal 35M� of WHW02, solar metal 40M�
of WW95, solar metal 40M� of WW95 updated in Heger et
al. (2001), and low metal 30M� of Nakazato et al. (2013). Spec-
tral shape parameter are shown only when relevant information
was available. Straight lines are linear fits through the spectral
parameters.

that large compactness is conducive to black hole formation
(e.g., O’Connor & Ott 2011). In general, the precise value
of ⇠2.5,crit will depend on the explosion mechanism and their
implementation. For the neutrino mechanism, current imple-
mentations suggest values between 0.2 and 0.6 (O’Connor &
Ott 2011; Ugliano et al. 2012; Horiuchi et al. 2014; Pejcha &
Thompson 2015; Ertl et al. 2016). However, ongoing e↵orts
are expected to update predictions in the future. We thus
treat ⇠2.5,crit as a parameter of interest that is predicted by
simulations and to be tested by future observational data.
For the neutrino emission of failed explosions, we adopt the
functional form equation (12) with neutrino spectral param-
eters predicted by black hole forming simulations (Figure 5).

The predicted weighted average neutrino spectra includ-
ing contributions from collapse to black holes are shown as
non-solid lines in Figure 6. Four values of ⇠2.5,crit = 0.1,
0.2, 0.3, and 0.43 are shown. Based on the solar metallic-
ity progenitors of WHW02, these critical values correspond
to failed explosion fractions (the number of failed explosions
over the total number of massive stars in the mass range
8–100M�) of 45%, 17%, 5%, and 0%, respectively. Note that
the largest compactness in the WHW02 solar metallicity
stellar suite is ⇠2.5 ⇡ 0.43. Therefore, values of ⇠2.5,crit above
0.43 means no contribution from collapse to black holes in
our calculations.

The resulting spectra are the combined e↵ect of failed
explosions having lower neutrino total energies and higher
mean energies than the 2D counterparts. The smaller the

critical compactness, the larger the contribution from failed
explosions, and thus the more prominent is the high-energy
component of the mean neutrino spectrum. Adopting a
shallower (steeper) IMF increases (decreases) the empha-
sis on the most massive stars. For example, compared to the
Salpeter IMF, a slope of �2.15 implies ⇠ 30% larger repre-
sentation of the most massive stars M > 40M�. However,
the most massive stars are rare and the increase is mod-
est in absolute terms. Even for the shallow �2.15 slope and
largest failed fraction (⇠2.5,crit = 0.1), the weighted average
neutrino spectrum is only a↵ected at the few percent level
below neutrino ⇠ 30 MeV and ⇠ 15% above ⇠ 60 MeV.

The core compactness of massive stars has recently been
carefully investigated by Sukhbold & Woosley (2014) using
1D stellar evolution codes. They show that quantitatively,
the compactness of a star depends on a range of inputs,
including not only the initial stellar mass and metallicity,
but also the way mass loss and convection are handled in
the code, as well as the nuclear microphysics implementa-
tion. However, the authors also show that qualitatively the
compactness robustly follows a non-monotonic distribution
in ZAMS mass, with a peak around ⇠ 20M�. This is the
result of the interplay of the carbon-burning shell with the
carbon-depleted core, and later, oxygen-burning shell with
the oxygen-depleted core. Nevertheless, the position of the
peak has an uncertainty of some ⇠ 1M� in mass (Sukhbold
& Woosley 2014). To explore other currently-available suites
of pre-supernova progenitor models, we determine the av-
erage neutrino flux employing the pre-supernova models of
Woosley & Heger (2007). This suite of progenitors in general
has similar or higher compactness compared to WHW02,
reaching a peak compactness of ⇠2.5 ⇡ 0.54 compared to 0.43

for WHW02. Also, a second peak in compactness at ⇠ 40M�
is evident, in addition to the peak around ⇠ 20M� that is
seen in WHW02 and Sukhbold & Woosley (2014). These fea-
tures manifest as a harder predicted average neutrino spec-
tra, because higher compactness yields higher neutrino lu-
minosities and mean energies (Figure 3). In Section 3.4, we
show how this a↵ects the DSNB event rate prediction.

3.3 DSNB flux prediction

The DSNB is determined by integrating the cosmic history
of the comoving core-collapse rate, RCC (z), by the mean neu-
trino spectrum per core collapse, dN/dE, appropriately red-
shifted, over cosmic time (see, e.g., Beacom 2010, for a recent
review),

d�
dE
= c

π
RCC(z)

dN
dE 0 (1 + z)

���� dt
dz

���� dz , (14)

where E 0 = E(1+z) and |dz/dt | = H0(1+z)[⌦m(1+z)3+⌦⇤]1/2.
We include contributions out to a redshift of 5, which is
su�ciently large to include the majority of the DSNB flux
(Ando & Sato 2004) for ⇠ 10 MeV neutrino energy threshold.

For the cosmic history of the core-collapse rate, we
adopt those predicted from the comoving star formation rate
(e.g., Hopkins & Beacom 2006), which yields a robust es-
timate for the core-collapse rate regardless of whether the
collapse generates a luminous supernova or not (Horiuchi
et al. 2011). The scaling from the star formation rate to the
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Figure 5. Same as Figure 3 but for failed explosions. Note the
di↵erent ranges in both horizontal and vertical axes. From small
to large compactness, points represent the solar metal 40M�
of WHW02, solar metal 25M� of WHW02, zero metal 33M�
of WHW02, zero metal 35M� of WHW02, solar metal 40M�
of WW95, solar metal 40M� of WW95 updated in Heger et
al. (2001), and low metal 30M� of Nakazato et al. (2013). Spec-
tral shape parameter are shown only when relevant information
was available. Straight lines are linear fits through the spectral
parameters.

that large compactness is conducive to black hole formation
(e.g., O’Connor & Ott 2011). In general, the precise value
of ⇠2.5,crit will depend on the explosion mechanism and their
implementation. For the neutrino mechanism, current imple-
mentations suggest values between 0.2 and 0.6 (O’Connor &
Ott 2011; Ugliano et al. 2012; Horiuchi et al. 2014; Pejcha &
Thompson 2015; Ertl et al. 2016). However, ongoing e↵orts
are expected to update predictions in the future. We thus
treat ⇠2.5,crit as a parameter of interest that is predicted by
simulations and to be tested by future observational data.
For the neutrino emission of failed explosions, we adopt the
functional form equation (12) with neutrino spectral param-
eters predicted by black hole forming simulations (Figure 5).

The predicted weighted average neutrino spectra includ-
ing contributions from collapse to black holes are shown as
non-solid lines in Figure 6. Four values of ⇠2.5,crit = 0.1,
0.2, 0.3, and 0.43 are shown. Based on the solar metallic-
ity progenitors of WHW02, these critical values correspond
to failed explosion fractions (the number of failed explosions
over the total number of massive stars in the mass range
8–100M�) of 45%, 17%, 5%, and 0%, respectively. Note that
the largest compactness in the WHW02 solar metallicity
stellar suite is ⇠2.5 ⇡ 0.43. Therefore, values of ⇠2.5,crit above
0.43 means no contribution from collapse to black holes in
our calculations.

The resulting spectra are the combined e↵ect of failed
explosions having lower neutrino total energies and higher
mean energies than the 2D counterparts. The smaller the

critical compactness, the larger the contribution from failed
explosions, and thus the more prominent is the high-energy
component of the mean neutrino spectrum. Adopting a
shallower (steeper) IMF increases (decreases) the empha-
sis on the most massive stars. For example, compared to the
Salpeter IMF, a slope of �2.15 implies ⇠ 30% larger repre-
sentation of the most massive stars M > 40M�. However,
the most massive stars are rare and the increase is mod-
est in absolute terms. Even for the shallow �2.15 slope and
largest failed fraction (⇠2.5,crit = 0.1), the weighted average
neutrino spectrum is only a↵ected at the few percent level
below neutrino ⇠ 30 MeV and ⇠ 15% above ⇠ 60 MeV.

The core compactness of massive stars has recently been
carefully investigated by Sukhbold & Woosley (2014) using
1D stellar evolution codes. They show that quantitatively,
the compactness of a star depends on a range of inputs,
including not only the initial stellar mass and metallicity,
but also the way mass loss and convection are handled in
the code, as well as the nuclear microphysics implementa-
tion. However, the authors also show that qualitatively the
compactness robustly follows a non-monotonic distribution
in ZAMS mass, with a peak around ⇠ 20M�. This is the
result of the interplay of the carbon-burning shell with the
carbon-depleted core, and later, oxygen-burning shell with
the oxygen-depleted core. Nevertheless, the position of the
peak has an uncertainty of some ⇠ 1M� in mass (Sukhbold
& Woosley 2014). To explore other currently-available suites
of pre-supernova progenitor models, we determine the av-
erage neutrino flux employing the pre-supernova models of
Woosley & Heger (2007). This suite of progenitors in general
has similar or higher compactness compared to WHW02,
reaching a peak compactness of ⇠2.5 ⇡ 0.54 compared to 0.43

for WHW02. Also, a second peak in compactness at ⇠ 40M�
is evident, in addition to the peak around ⇠ 20M� that is
seen in WHW02 and Sukhbold & Woosley (2014). These fea-
tures manifest as a harder predicted average neutrino spec-
tra, because higher compactness yields higher neutrino lu-
minosities and mean energies (Figure 3). In Section 3.4, we
show how this a↵ects the DSNB event rate prediction.

3.3 DSNB flux prediction

The DSNB is determined by integrating the cosmic history
of the comoving core-collapse rate, RCC (z), by the mean neu-
trino spectrum per core collapse, dN/dE, appropriately red-
shifted, over cosmic time (see, e.g., Beacom 2010, for a recent
review),

d�
dE
= c

π
RCC(z)

dN
dE 0 (1 + z)

���� dt
dz

���� dz , (14)

where E 0 = E(1+z) and |dz/dt | = H0(1+z)[⌦m(1+z)3+⌦⇤]1/2.
We include contributions out to a redshift of 5, which is
su�ciently large to include the majority of the DSNB flux
(Ando & Sato 2004) for ⇠ 10 MeV neutrino energy threshold.

For the cosmic history of the core-collapse rate, we
adopt those predicted from the comoving star formation rate
(e.g., Hopkins & Beacom 2006), which yields a robust es-
timate for the core-collapse rate regardless of whether the
collapse generates a luminous supernova or not (Horiuchi
et al. 2011). The scaling from the star formation rate to the
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Figure 1. Time evolution of neutrino spectral parameters for the
core collapse of the 35M� progenitor leading to black hole for-
mation at 630 msec post bounce. The neutrino luminosity (top
panel), mean energy of neutrinos (middle panel), and shape pa-
rameter ↵ (bottom panel) are shown for ⌫e (red solid), ⌫̄e (blue
dashed), and ⌫µ (black dot-dashed); the ⌫̄µ are not shown for
clarity but are quantitatively very similar to ⌫µ . All quantities
are shown as functions of time after the core bounce.

emitted from the collapse of the 35M� star as an example.
The duration of neutrino burst is short, ⇠ 630 msec for this
case, from core bounce until the termination due to black
hole formation. The rapid increase of the mean energies of
all neutrino species during the short burst is the hallmark
signature of the evolution towards black hole formation. As
the protoneutron star grows massive due to mass accretion,
it becomes compact with increasing density and tempera-
ture. Accordingly, the energies of neutrinos rapidly increase
from the moment of core bounce until the formation of the
back hole.

The initial behavior during core bounce is similar to
the ordinary case of collapse to neutron stars, i.e., neutrinos
showing the usual peaks due to the neutronization burst (in
⌫e) and the passage of shock wave. As in the neutron star
case, the ⌫e and ⌫̄e luminosities originate from the energy
release by neutrinos through electron (positron) absorptions
in the accreting matter and show variations according to
the accretion rate. A peak in the energy of ⌫µ is observed
around the timing of the neutronization burst, which is due
to the passage of the shock wave through neutrinospheres.
High-energy neutrinos are created at high temperature due
to the shock passage right after core bounce. Those neutri-
nos outwardly propagate from the neutrino thermal sphere
and remain without degrading energy until they are emit-
ted from neutrino scattering sphere. This brief hardening
of spectra leads to a temporary drop of the shape parame-
ter. This phenomenon has also been seen in previous studies
(Liebendoerfer et al. 2005; Buras et al. 2006; Lentz et al.
2012b) and is not seen with energy changing reactions.
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Figure 2. The same as Figure 1, but for 2D simulation. The 23M�
progenitor is chosen for comparison, since it has the highest ⇠2.5

among the 101 solar metallicity progenitors of the WHW02 suite
used in this study. The vertical dashed line shows the transition
from numerical hydrodynamic to analytic extrapolation regimes.

2.2 Axis-symmetric simulations

We adopt two sets of 2D axis–symmetric core-collapse mod-
els. In these 2D models, the same EOS (LS EOS with
K = 220 MeV) was adopted as in our 1D models, while
self-gravity and neutrino transport were solved in di↵erent
ways. The first set of simulations we adopt are from Naka-
mura et al. (2015). In these models, self-gravity was com-
puted with a Newtonian monopole approximation, and neu-
trino transport for electron and anti–electron neutrinos (⌫e
and ⌫̄e) were performed with an energy-dependent treatment
of neutrino transport based on the isotropic di↵usion source
approximation (IDSA; Liebendoerfer et al. 2009) with a ray-
by-ray approach. This approximation has a high computa-
tional e�ciency in parallelization, which allows to explore
systematic features of neutrino emission for a large num-
ber of supernova models. Regarding heavy–lepton neutrinos
(⌫x = ⌫µ, ⌫⌧, ⌫̄µ, ⌫̄⌧), a leakage scheme was employed to in-
clude cooling processes. Since the leakage scheme does not
enable us to obtain spectral information, we assume that the
average energy of ⌫x is given by the temperature of matter
at the corresponding average neutrinosphere.

In Nakamura et al. (2015), 378 non-rotating progen-
itor stars from WHW02 covering zero-age main sequence
(ZAMS) mass from 10.8 M� to 75 M� with metallicity from
zero to solar value were investigated. From these, we choose
101 supernova models with solar metallicity for the current
study. This is because lower metallicity supernovae are dom-
inant in distant galaxies where the neutrinos would su↵er
from energy redshift and thus contribute little to the de-
tectable DSNB signal. The chosen 101 models cover a wide
range of compactness (⇠2.5 from 0.0033 for the 10.8 M�
model to 0.434 for the 23.0 M� model).

MNRAS 000, 1–14 (2016)

Time evolution of neutrino spectral 
parameters for the core collapse of the 
35Mo progenitor leading to black hole 
formation at 630 msec post bounce. 
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中心密度が上がり続ける.
→ ニュートリノ光度 Lν および 平均エネルギー Eν は
時間とともに上昇.
（CCSNとして爆発するケースより高い.）

バウンス後数百 ms でBH形成.
→ ニュートリノ放出が途絶える.
（爆発するケースより短い.）

α は スペクトルの形状を表す shape parameter 
(pinching parameter; Tamborra+’12,’14).

High-resolution supernova neutrino spectra represented by a simple fit

Irene Tamborra,1 Bernhard Müller,2 Lorenz Hüdepohl,2 Hans-Thomas Janka,2 and Georg Raffelt1
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To study the capabilities of supernova neutrino detectors, the instantaneous spectra are often repre-

sented by a quasithermal distribution of the form f!ðEÞ / E"e#ð"þ1ÞE=Eav , where Eav is the average energy

and " a numerical parameter. Based on a spherically symmetric supernova model with full Boltzmann

neutrino transport we have, at a few representative postbounce times, reconverged the models with vastly

increased energy resolution to test the fit quality. For our examples, the spectra are well represented by

such a fit in the sense that the counting rates for a broad range of target nuclei, sensitive to different parts

of the spectrum, are reproduced very well. Therefore, the mean energy and root-mean-square energy of

numerical spectra hold enough information to provide the correct " and to forecast the response of

multichannel supernova neutrino detection.

DOI: 10.1103/PhysRevD.86.125031 PACS numbers: 14.60.Pq, 97.60.Bw

I. INTRODUCTION

The neutrino signal from the next nearby core-collapse
supernova (SN) remains the most coveted target for low-
energy neutrino astronomy. Galactic SNe are rare, perhaps
a few per century, and such an observation will be a once-
in-a-lifetime opportunity to look deeply inside a collapsing
star and learn about its astrophysical workings as well as
about neutrino properties. Several detectors worldwide are
in operation that will register a high-statistics signal while
others are in preparation or under discussion [1].

In order to assess the physics potential of various
detectors or detection principles one needs the expected
flavor-dependent SN neutrino flux spectra. In the absence
of self-consistent three-dimensional core-collapse simula-
tions there is no standard SN neutrino flux model and
moreover, the flavor-dependent flux spectra depend on the
properties of the incompletely known neutron-star equation
of state, on the properties of the collapsing star, notably its
mass, and, of course, on time for any given case. In this
situation parametric studies, taking account of the plausible
range of predictions, are the preferred course of action.

We here address one particular aspect of such studies,
i.e., the plausible spectral shape of SN neutrino fluxes. On a
rough level of approximation, the spectra follow a thermal
distribution that can be described in terms of an effective
temperature. In detail the spectra formation is a compli-
cated process, different energy groups emerging from
different depths in the proto-neutron star atmosphere
[2,3], and a more refined description is necessary for a
more detailed understanding.

The next level of sophistication is to describe the non-
equilibrium spectra by a three-parameter fit that allows
for deviations from a strictly thermal spectrum [4]. One
particularly simple realization are spectra where the
energy-dependent neutrino number flux for each flavor
has the form [3]

f!ðEÞ / E"e#ð"þ1ÞE=Eav : (1)

Here, Eav is the average energy and " a numerical parame-
ter describing the amount of spectral pinching; the value
" ¼ 2 corresponds to a Maxwell-Boltzmann spectrum,
and " ¼ 2:30 to a Fermi-Dirac distribution with zero
chemical potential. In general the neutrino spectra are
fitted by 2 & " & 4 [3] with higher "> 2 indicating
stronger pinching and "< 2meaning antipinching relative
to a Maxwell-Boltzmann distribution. The three parame-
ters Eav, ", and the overall normalization can be deter-
mined, for example, if a numerical SN simulation provides
the energy flux (luminosity) L! in some flavor, the average
energy Eav ¼ hE!i and some other energy moment, for
example hE2

!i or sometimes hE3
!i.

While spectra of the form of Eq. (1) certainly provide a
reasonable overall representation, it is not obvious how
well the spectral tails are reproduced. For studying detector
responses with target nuclei with a significant energy
threshold, it is imperative that the accuracy of the " fit in
the high-energy tail be checked against solutions of the
neutrino transport equations. This is especially relevant for
example for lead in the Halo detector [5], argon in future
large-scale liquid argon detectors [6], or subdominant de-
tection channels on oxygen in water Cherenkov detectors
[7] or on carbon in liquid scintillator detectors [8].
Modern numerical SN codes treat neutrino transport

with Boltzmann solvers that are expected to produce
physically accurate spectra. On the other hand, neutrino
transport is the most CPU-time-consuming aspect of
SN simulations so that in practice the energy resolution
is limited. For example, in typical simulations of the
Garching group, 17–21 energy bins are used, correspond-
ing to an energy resolution !#=#' 0:3. Whether such a
(seemingly) coarse zoning is adequate for modeling the
high-energy tail of the spectrum and hence for judging the
quality of " fits needs to be determined at least once by a
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Neutrino emission parameters for 1D failed 
explosions. Straight lines are linear fits 
through the spectral parameters. 
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Figure 5. Same as Figure 3 but for failed explosions. Note the
di↵erent ranges in both horizontal and vertical axes. From small
to large compactness, points represent the solar metal 40M�
of WHW02, solar metal 25M� of WHW02, zero metal 33M�
of WHW02, zero metal 35M� of WHW02, solar metal 40M�
of WW95, solar metal 40M� of WW95 updated in Heger et
al. (2001), and low metal 30M� of Nakazato et al. (2013). Spec-
tral shape parameter are shown only when relevant information
was available. Straight lines are linear fits through the spectral
parameters.

tion 2.3, the shape parameter is particularly sensitive to the
details of included microphysics.

We next repeat the exercise for collapse to black holes,
shown as solid symbols in Figure 5. For these, the time in-
tegral is performed until the moment of black hole forma-
tion. For consistency, we collect simulations from the liter-
ature that adopt a LS EOS with K = 220 MeV. Hempel
et al. (2012) simulated the collapse of the solar metallic-
ity 40M� star of WW95 updated in Heger et al. (2001),
whose ⇠2.5 ⇡ 0.59. Nakazato et al. (2013) followed black hole
formation in their low metal 30M� progenitor, whose com-
pactness is ⇠2.5 ⇡ 0.74 (private communication). Hudepohl
(2014) simulated the collapse of the solar metal 25M� and
40M� progenitors of WHW02, with compactness ⇠2.5 ⇡ 0.31

and ⇠2.5 ⇡ 026, respectively.
To this list we add simulations of the solar metallicity

40M� star of WW95 with ⇠2.5 ⇡ 0.55 (note the di↵erent
compactness from the version updated in Heger et al. 2001),
as well as the 33M� and 35M� zero-metallicity progenitors
of WHW02 with ⇠2.5 ⇡ 0.39 and 0.52, respectively. Due to
the limited number of black hole forming collapse simula-
tions, we fit the neutrino spectral parameters by a linear
function of ⇠2.5, separately for ⌫e, ⌫̄e, and ⌫x . These are
shown by the solid lines in Figure 5. We find the neutrino
energetics tend to decrease with compactness, which can be
understood by the fact larger compactness progenitors have
shorter durations for black hole formation; it is well approx-
imated as / ⇠�3/2 (e.g., O’Connor & Ott 2011). Although

the shorter duration is partially compensated by higher lu-
minosities, the duration dominates the overall e↵ect. The
neutrino mean energies show a flat (for ⌫e and ⌫̄e) or rise
(for ⌫x) with compactness. The rise in ⌫x mean energy is
the hallmark signature of black hole formation: the rapid
mass accretion increases the protoneutron star density and
temperature, which is reflected in ⌫x ; the other flavors by
comparison have larger neutrinosphere radii and are less af-
fected. For example, the ⌫e, ⌫̄e, and ⌫x neutrinosphere radii
are 60, 58, and 30 km for the neutrino energy of 34 MeV at
400 msec after bounce in the case of 35M�. The protoneu-
tron star radii shrinks to ⇠30 km (⇢ > 10

10 g/cm3) by this
time. The shape parameter shows a weak tendency to in-
crease with compactness, which can be understood by the
decrease of duration time with compactness. This is because
the shape parameter has initially high values and a plateau
of low values in the late phase, so shorter duration time re-
sults in larger values of the time-integrated shape parameter.

3.2 IMF-weighted average neutrino spectrum

The average neutrino spectrum per core collapse, dN/dE,
can be derived by evaluating the contribution of a given pro-
genitor by the initial mass function (IMF). Since the IMF
falls steeply with progenitor mass, contributions from lower
mass progenitors become important. We use the ZAMS mass
bins used in WHW02, which runs from 10.8M� to 75M�.
Progenitors with initial masses below this range evolve and
collapse as ONeMg cores (Jones et al. 2013), and is an
important population of the DSNB (e.g., Mathews et al.
2014). We include this population based on the long-term
core-collapse simulation of Hudepohl et al. (2010) who used
the 8.8M� progenitor of Nomoto (1984, 1987). The time-
integrated neutrino spectral parameters (not shown in Fig-
ure 3) are (E tot

⌫ , hE⌫i, h↵i) = (2.07, 8.05, 2.53), (2.08, 9.13, 1.89),
and (2.32, 9.83, 1.43) for ⌫e, ⌫̄e, and ⌫x , respectively, in the
same units are shown in Figure 3. For progenitors above
75M� we extend the 75M� mass bin to 100M�.

The average neutrino spectrum is then obtained as,

dN
dE
=
’
i

Ø
�Mi

 (M)dMØ
100

8
 (M)dM

fi(E) , (13)

where �Mi is the mass range of mass bin i,  (M) = dn/dM
is the IMF, and fi(E) is the spectrum as defined in Eq. (12)
with neutrino spectral parameters (E tot

⌫ , hE⌫i, h↵i) for the
core collapse of a progenitor of mass Mi . Since we charac-
terize the spectral parameters in compactness, yet the abun-
dance of progenitors is determined by its ZAMS mass, we re-
quire knowledge of the distribution of compactness in mass,
⇠(M). We adopt the distribution from the pre-supernova
models of WHW02, but explore other possibilities later.
Finally, we adopt a Salpeter IMF with  (M) / M⌘ with
⌘ = �2.35 in the mass range 8–100M�, but explore a liberal
range from �2.15 to �2.45 (Bastian et al. 2010) in our final
calculations.

The resulting average DSNB flux is shown by the solid
curves in Figure 6, for the ⌫̄e (top panel) and ⌫x (bottom
panel). The average ⌫̄e spectrum can be well modeled by the
pinched Fermi-Dirac spectral function with total energetics
4.3⇥ 10

52 erg, mean energy 14.6 MeV, and shape parameter
3.3. The ⌫x depends on the assumed shape parameter. In
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BH Forming Event – 1D simulations

コンパクトネス

質量の中心集中度を表すパラメータ.

ξ が大きい〜質量降着率が大きい.
→ Lνや Eνは高い.
→ しかしBH形成までの時間が短い.
→ ν エネルギー放出量と平均エネルギーは減少.

中心密度が上昇
→ エネルギーの高いニュートリノほど出てこれない.
→ α は増加.
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relativistic simulations to explore collapse to black holes,
and a suite of axis-symmetric two-dimensional (2D) simula-
tions to explore the shock revival leading to the possibility of
explosion leaving behind neutron stars. We emphasize that
it is important to keep in mind that both simulation suites
will need to be updated in the future by full 3D simulations.
Our foremost aim is to demonstrate qualitative conclusions,
bearing in mind predictions will be quantitatively refined
as more simulations become available. We discuss the some
specific caveats in Sections 2.3 and 4.

2.1 Spherically symmetric simulations

Numerical simulations of failed explosions—collapse of mas-
sive stars to black holes—are performed by a general rel-
ativistic neutrino-radiation hydrodynamics code (Yamada
1997; Sumiyoshi et al. 2005). The code solves the Boltz-
mann equation for neutrinos by the Sn (multi-angle) method
coupled with the equations of Lagrangian hydrodynamics in
general relativity. The multi-energy treatment of the code
enables us to derive detailed information of neutrino energy
spectra for all neutrino species. A fully implicit method for
time evolution is advantageous to follow the long-term evolu-
tion (⇠ 1 sec) of compact objects born after the core bounce.
The code has been applied to the study of core-collapse su-
pernovae (Sumiyoshi et al. 2005) and black hole formation
in massive stars (Sumiyoshi et al. 2006, 2007, 2008).

We implement nuclear physics in the same way as in
Sumiyoshi et al. (2005, 2007). The basic set of neutrino reac-
tions rates (Bruenn 1985) for emission, absorption, and scat-
tering processes as well as pair-processes and the nucleon–
nucleon bremsstrahlung are taken into account. The code
solves the neutrino distributions of four species (⌫e, ⌫̄e, ⌫µ
and ⌫̄µ; the latter two of which also represent ⌫⌧ and ⌫̄⌧).
The equation of state (EOS) by Lattimer & Swesty (1991)
with the incompressibility of 220 MeV is adopted in the cur-
rent study. It is worth mentioning that the uncertainties in
nuclear physics needs to be further scrutinized, including
more sophisticated neutrino reaction rates (e.g., Lentz et al.
2012a; Mart́ınez-Pinedo et al. 2012, 2014; Horowitz et al.
2017) and modern set of EOSs (Oertel et al. 2016). We will
discuss the influence of EOS and our EOS choice below in
§3.5.

In order to reveal the systematics of neutrino signals
from a variety of massive stars, we choose the compactness
parameter,

⇠M =
M/M�

R(Mbary = M)/1000 km

����
t

, (1)

where R(Mbary = M) is the radial coordinate that encloses
a baryonic mass M at epoch t, to characterize the density
profiles of the progenitors. In particular, the compactness
defined by a large mass of M ⇡ 2.5M� is useful to estimate
the time period from the core bounce till the black hole for-
mation and the duration of neutrino emission (O’Connor &
Ott 2011). Since the iron core mass is large and the accre-
tion rate of the outer layer is high for a large compactness, a
newly born protoneutron star at the center rapidly becomes
massive and leads to dynamical collapse to a black hole when
it reaches the critical neutron star mass.

We thus set up initial conditions taken from the central

core of massive stars selected to cover a range of compact-
ness. We follow the time evolution of gravitational collapse,
core bounce with a launch of shock wave, and its stall due
to the accretion of matter. As we will see, the compact-
ness controls the accretion rate through the free-fall time,
the time duration till the black hole formation and, there-
fore, the energetics of neutrino emission. We cover a range of
the compactness by choosing the following progenitor mod-
els: 40 M� of Woosley & Weaver (1995) (WW95) with so-
lar metallicity, and models of 33M� and 35M� of Woosley
et al. (2002) (WHW02) with zero metallicity. These pro-
genitors have a compactness of ⇠2.5 = 0.55, 0.39 and 0.52,
respectively. Here and elsewhere, we evaluate the compact-
ness of the progenitor (Sukhbold & Woosley 2014) instead
of the original definition at t of core bounce (O’Connor &
Ott 2011).

Radial grids of the mass coordinate are arranged in a
non-uniform way to cover the central objects, the shock wave
and the accreting material. The numbers of grids for radial
mass coordinate, neutrino angle and energy are 255, 6 and
14, respectively. In order to describe the long-term evolution
of accretion we utilize the rezoning of grids during the calcu-
lations. For cases of low accretion rates, we utilize a fine mesh
with 511 grids for the radial mass coordinate. Since the case
of 40M� is available from previous studies (Nakazato et al.
2008, 2013), we newly performed the two cases of 33M� and
35M� for the current study. Note that our numerical simu-
lations can provide detailed information of neutrino spectra
by solving the Boltzmann equations, being di↵erent from the
survey by O’Connor & Ott (2011). The library of neutrino
signal for various progenitors can be found in Nakazato et al.
(2013).

We evaluate the neutrino’s spectral parameters utiliz-
ing the neutrino distribution function for neutrino energy,
"⌫ , f⌫(µ⌫, "⌫, t) at the surface of the core, obtained from the
Boltzmann equation, where µ⌫ = cos ✓⌫ is cosine of the neu-
trino propagation angle with respect to the radial coordi-
nate. The neutrino luminosity, mean energy, and shape pa-
rameter are defined by,

L⌫(t) = 4⇡R2
s cF⌫(t) , (2)

E⌫(t) = h✏⌫(t)i =
✏⌫(t)
n⌫(t)

, (3)

↵(t) =
2h✏⌫i2 � h✏2⌫ i
h✏2⌫ i � h✏⌫i2

, (4)

where Rs is taken as the iron core radius (for our chosen
progenitors, in the range 0.6–1 ⇥ 10

9 cm) and the mean-
squared energy is,

h✏2⌫ (t)i =
✏2⌫ (t)
n⌫(t)

, (5)

and the average energies and flux are evaluated using energy
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CCSNとして爆発するようなモデルからのニュートリノ放射は
2D計算を基に算出 (Nakamura+’15)

親星モデル：
M = 10.8-75 M⊙, Z = Z⊙の101モデル
(Woosley, Heger, & Weaver ’02)

ニュートリノデータを時間外挿する必要.
NS半径が

で収縮していくと仮定（Rf = 15 km）.
重力エネルギー解放率〜ニュートリノ光度.

DSNB from extensive core-collapse simulations 5

The neutrino luminosity, mean energy and the shape
parameter are defined in the same manner as in our 1D
models (except ⌫x mean energy and shape parameter as de-
scribed above). Since the 2D simulations in Nakamura et al.
(2015) were terminated at ⇠ 1 s after bounce, the neutrino
emissions during the cooling phase of the protoneutron star
were not fully solved. More than half of the total neutrino
energy is expected to be emitted after the end of the simula-
tions. Thus, we extrapolate the neutrino properties based on
some assumptions: (1) the core radius contracts according to
R(t) = Rf+(Ri�Rf)e�t/t0 (Arcones et al. 2007), where the final
core radius Rf is set to be 15 km, and the initial radius Ri and
the contraction timescale t0 are found by fitting this function
to the time evolution of the core radius during the simula-
tions; (2) the gravitational energy released per unit time by
the core contraction is converted to the loss rate of neu-
trino energy (total neutrino luminosity) with a conversion
e�ciency � which is of order unity and determined at the
final time of each simulation; (3) the average neutrino ener-
gies and relative luminosity ratios among neutrino flavors are
fixed to the final value of each simulation. In this extrapola-
tion process we ignore the contribution of accreting matter
to the neutrino emission, which is a good assumption for the
late phase of protoneutron star evolution. Long-term core-
collapse simulations taking into account energy-dependent
neutrino transport and core evolution will improve our su-
pernova neutrino models in the future.

The second set of 2D simulations are from Summa et al.
(2016). In these models, self-gravity is computed using gen-
eral relativistic monopole corrections as described in Marek
et al. (2006), and neutrino transport is solved with a ray-by-
ray approximation along radial rays using a variable Edding-
ton factor method (e.g., Buras et al. 2006) for all neutrinos.
A total of 18 progenitor models in the ZAMS mass range
11.2–28M� is selected from WHW02 and Woosley & Heger
(2007), spanning compactness ⇠2.5 from 0.005 (for the 11.2
M� model) to 0.33 (for the 25.0 M� model). Since the num-
ber of progenitor is smaller, we mainly adopt the simulation
suite of Nakamura et al. (2015) for this paper; however, the
Summa et al. (2016) models serve as an excellent compari-
son to see potential systematic di↵erences due to numerical
treatments.

We compute the neutrino luminosity, mean energy and
the shape parameter as defined in the same manner as in our
previous models with one modification. Since the Summa
et al. (2016) models were terminated typically at ⇠ 0.5 s
after bounce, there is less post-accretion phase data to per-
form a reliable fit to the late-time radius evolution following
the prescription of Arcones et al. (2007). Furthermore, in
some cases the protoneutron mass is still visibly increasing
at the final simulation time step. We therefore adopt the
following assumptions to compute the late-time emission,
noting that the emphasis is to obtain time-integrated quan-
tities: (1) the core radius contracts from the radius at the
final time step to a final radius of 15 km; (2) the mass grows
according to M(r) = M0 + M1(1 � e�t/⌧M ), where M0, M1,
and ⌧M are found by fitting this function to the time evolu-
tion of the protoneutron mass; (3) the gravitational binding
energy released after the final simulation step is equipar-
titioned between all neutrino flavors; and (4) the average
neutrino energies and pinching factors are fixed to the final
value of each simulation.

2.3 Similarities and di↵erences between 1D and

2D

We have utilized 1D and 2D core-collapse simulations to
model core collapse to black holes and neutron stars, re-
spectively. Ideally, we want any di↵erences between the sim-
ulation suites to reflect only the di↵erent outcomes of core
collapse. However, the di↵erent implementations of micro-
physics and numerical treatments can also a↵ect the neu-
trino emission. While the simulation suites share many core
microphysics implementations, the list of what are consid-
ered necessary interactions and their implementations are
topics of ongoing research. Here, we compare and contrast
the results of our 1D and 2D simulations, but this caveat
should be kept in mind. Future systematic studies, informed
by state-of-the-art focused simulations, will continuously im-
prove predictions.

Sample neutrino emission properties are shown in Fig-
ures 1 and 2 for collapse to black holes and neutron stars,
respectively. Figure 1 shows a 35M� progenitor with com-
pactness ⇠2.5 ⇡ 0.52. Since there is no progenitor in our 2D
suites with such a high compactness, we compare with the
the largest available: the 23M� progenitor with ⇠2.5 = 0.43.
The initial bounce phase is similar in both 1D and 2D: a
strong neutronization burst signal (in ⌫e), followed by the
rise in ⌫̄e and ⌫x emissions; and the expected hierarchy in
neutrino luminosities (⌫x < ⌫̄e < ⌫e) and mean energies
(⌫e < ⌫̄e < ⌫x). However, the failed explosion necessarily ex-
periences high post-bounce mass accretion, which drives the
protoneutron star above its mass limit (at ⇠ 630 msec post
bounce for the 35M� progenitor). By contrast, the shock re-
vival experienced in the 2D simulation leads to dramatically
reduced mass accretion. The di↵erence in mass accretion is
responsible for significantly larger neutrino luminosities and
energies in the failed explosion.

Di↵erences can also be seen in the spectral shape pa-
rameter ↵. Systematically smaller values are obtained for
failed explosions for ⌫e and ⌫̄e (we cannot compare the shape
parameter of ⌫x due to a lack of detailed transport for ⌫x
in Nakamura’s 2D simulations). Comparing flavors, the ⌫x
shows significantly smaller shape parameter than ⌫e and ⌫̄e.
To see whether these di↵erences are real or numerical, we
can compare the results of our 2D simulation with that in
Figure 10 of Mirizzi et al. (2016), where the core collapse of
a 27M� progenitor was simulated using LS220 EOS. They
find the shape parameter decreases, from around 4–5 to ⇠ 3

for ⌫e and ⌫̄e, and from around ⇠ 3 to ⇠ 2 for ⌫x , during the
first second post bounce. This behavior confirms that in-
deed the ⌫x should have lower shape parameters than ⌫e or
⌫̄e. This is primarily driven by the ⌫x emission arising from
deeper in the protoneutron star with a larger neutrinosphere
width, which results in the contribution of higher temper-
ature emissions and hence a smaller ↵. Thus, we conclude
that it is reasonable that the shape parameter shows an even
larger suppression in failed explosions where the larger accre-
tion rates heat the protoneutron star and neutrinospheres.
Additionally, as a more detailed comparison we also ran a
simulation of the 27M� progenitor with LS220 EOS using
a three flavor IDSA transport scheme (Takiwaki et al., in
prep). We found that ↵ for ⌫e and ⌫̄e start around 4–5 and
drop to 3–4 by ⇠ 1 sec post bounce, while the ⌫x falls from
⇠ 2 to ⇠ 1, similar in behavior to the results of Mirizzi et al.
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Figure 1. Time evolution of neutrino spectral parameters for the
core collapse of the 35M� progenitor leading to black hole for-
mation at 630 msec post bounce. The neutrino luminosity (top
panel), mean energy of neutrinos (middle panel), and shape pa-
rameter ↵ (bottom panel) are shown for ⌫e (red solid), ⌫̄e (blue
dashed), and ⌫µ (black dot-dashed); the ⌫̄µ are not shown for
clarity but are quantitatively very similar to ⌫µ . All quantities
are shown as functions of time after the core bounce.

emitted from the collapse of the 35M� star as an example.
The duration of neutrino burst is short, ⇠ 630 msec for this
case, from core bounce until the termination due to black
hole formation. The rapid increase of the mean energies of
all neutrino species during the short burst is the hallmark
signature of the evolution towards black hole formation. As
the protoneutron star grows massive due to mass accretion,
it becomes compact with increasing density and tempera-
ture. Accordingly, the energies of neutrinos rapidly increase
from the moment of core bounce until the formation of the
back hole.

The initial behavior during core bounce is similar to
the ordinary case of collapse to neutron stars, i.e., neutrinos
showing the usual peaks due to the neutronization burst (in
⌫e) and the passage of shock wave. As in the neutron star
case, the ⌫e and ⌫̄e luminosities originate from the energy
release by neutrinos through electron (positron) absorptions
in the accreting matter and show variations according to
the accretion rate. A peak in the energy of ⌫µ is observed
around the timing of the neutronization burst, which is due
to the passage of the shock wave through neutrinospheres.
High-energy neutrinos are created at high temperature due
to the shock passage right after core bounce. Those neutri-
nos outwardly propagate from the neutrino thermal sphere
and remain without degrading energy until they are emit-
ted from neutrino scattering sphere. This brief hardening
of spectra leads to a temporary drop of the shape parame-
ter. This phenomenon has also been seen in previous studies
(Liebendoerfer et al. 2005; Buras et al. 2006; Lentz et al.
2012b) and is not seen with energy changing reactions.
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Figure 2. The same as Figure 1, but for 2D simulation. The 23M�
progenitor is chosen for comparison, since it has the highest ⇠2.5

among the 101 solar metallicity progenitors of the WHW02 suite
used in this study. The vertical dashed line shows the transition
from numerical hydrodynamic to analytic extrapolation regimes.

2.2 Axis-symmetric simulations

We adopt two sets of 2D axis–symmetric core-collapse mod-
els. In these 2D models, the same EOS (LS EOS with
K = 220 MeV) was adopted as in our 1D models, while
self-gravity and neutrino transport were solved in di↵erent
ways. The first set of simulations we adopt are from Naka-
mura et al. (2015). In these models, self-gravity was com-
puted with a Newtonian monopole approximation, and neu-
trino transport for electron and anti–electron neutrinos (⌫e
and ⌫̄e) were performed with an energy-dependent treatment
of neutrino transport based on the isotropic di↵usion source
approximation (IDSA; Liebendoerfer et al. 2009) with a ray-
by-ray approach. This approximation has a high computa-
tional e�ciency in parallelization, which allows to explore
systematic features of neutrino emission for a large num-
ber of supernova models. Regarding heavy–lepton neutrinos
(⌫x = ⌫µ, ⌫⌧, ⌫̄µ, ⌫̄⌧), a leakage scheme was employed to in-
clude cooling processes. Since the leakage scheme does not
enable us to obtain spectral information, we assume that the
average energy of ⌫x is given by the temperature of matter
at the corresponding average neutrinosphere.

In Nakamura et al. (2015), 378 non-rotating progen-
itor stars from WHW02 covering zero-age main sequence
(ZAMS) mass from 10.8 M� to 75 M� with metallicity from
zero to solar value were investigated. From these, we choose
101 supernova models with solar metallicity for the current
study. This is because lower metallicity supernovae are dom-
inant in distant galaxies where the neutrinos would su↵er
from energy redshift and thus contribute little to the de-
tectable DSNB signal. The chosen 101 models cover a wide
range of compactness (⇠2.5 from 0.0033 for the 10.8 M�
model to 0.434 for the 23.0 M� model).
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Figure 3. Neutrino emission parameters for 2D simulations: to-
tal energetics (upper panel), mean energy (middle panel), and
shape parameter (lower panel) shown for ⌫e (red circles), ⌫̄e (blue
squares), and ⌫x (black diamonds). Each point is a core-collapse
simulation, plotted at the value of the progenitor compactness
⇠2.5.

(2016). Since the high energy component of the neutrino
distribution is essential to determine the shape parameter,
the inclusion of improved neutrino reactions such as inelas-
tic scatterings on nucleons and nuclei, which contribute to
down-scattering of high energy neutrinos, is important for
the detailed prediction of the neutrino spectra.

3 DSNB PREDICTION AND DETECTION

3.1 Characterizing the neutrino emission

For each 2D core-collapse simulation, we estimate the to-
tal energy liberated in the form of neutrinos and the flux-
weighted mean neutrino energy as,

E tot
⌫ =

π
L⌫(t)dt , (10)

hE⌫i =

Ø
E⌫(t) €N⌫(t)dtØ €N⌫(t)dt

, (11)

where €N⌫ = L⌫/E⌫ . The time integrals are performed until
100 sec post bounce. We obtain the spectral shape parameter
h↵i by fitting the time-summed neutrino spectrum to the
pinched Fermi-Dirac functional form (Keil et al. 2003),

f (E) = (1 + h↵i)(1+h↵i)
�(1 + h↵i)

E tot
⌫ E h↵i

hE⌫i2+h↵i
exp


�(1 + h↵i) E

hE⌫i

�
, (12)

where hE⌫i is fixed to the flux-weighted average neutrino
energy, Eq. (11). This yields a better spectral fit than us-
ing a flux-weighted shape parameter analogous to the mean
energy of Eq. (11).

Figure 3 shows the spectral parameters (E tot, hE⌫i, h↵i)
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Figure 4. The same as Figure 3 but showing in bold filled sym-
bols the time-integrated spectral parameters for the simulations
of Summa et al. (2016).

separately for ⌫e, ⌫̄e, and ⌫x , plotted as functions of the com-
pactness ⇠2.5 of the progenitor. The total neutrino energet-
ics show a clear increase with the progenitor compactness,
consistent with previous studies: high compactness leads to
higher mass accretion rate, which leads to larger gravita-
tional energy liberation and hence higher neutrino energet-
ics (Nakamura et al. 2015). We also see a clear hierarchy in
the total energetics in neutrino flavor, ⌫x < ⌫̄e < ⌫e. The ⌫e
is largest due to the additional contribution from the delep-
tonization of the progenitor core. For mean energy, a mild
increase with compactness is evident. We also see the usual
hierarchy with ⌫e being the lowest and ⌫x being the high-
est. The shape parameter h↵i shows little variation between
di↵erent compactness or flavor, consistently falling between
3 to 4. As noted in section 2.2, we do not determine h↵i
for ⌫x due to limitations in our simulation setup. However,
as discussed in section 2.3, we expect it to be smaller than
the values for ⌫e or ⌫̄e, and we will explore values between
1.0–4.0 in this paper.

In Figure 4 we plot on the same data the time-integrated
spectral parameters for the 18 2D core-collapse simulations
of Summa et al. (2016). The same qualitative trends are
observed. For example, the hierarchy in the mean energy
and alpha with neutrino species is observed. Most impor-
tantly, the same trends with compactness are observed: rise
in the total neutrino energetics, mild increase in neutrino
average energies, and weak dependence for the shape pa-
rameter. The flavor hierarchy of the total energetics is more
modest in the Summa et al. (2016) models by construction:
since the Summa et al. (2016) simulations terminate earlier
and we assume the gravitational binding energy liberated
in the late-phase is equipartitioned in neutrino species. One
notable di↵erence is seen in the systematically lower shape
parameters. This is not surprising since as discussed in Sec-
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Figure 5. Same as Figure 3 but for failed explosions. Note the
di↵erent ranges in both horizontal and vertical axes. From small
to large compactness, points represent the solar metal 40M�
of WHW02, solar metal 25M� of WHW02, zero metal 33M�
of WHW02, zero metal 35M� of WHW02, solar metal 40M�
of WW95, solar metal 40M� of WW95 updated in Heger et
al. (2001), and low metal 30M� of Nakazato et al. (2013). Spec-
tral shape parameter are shown only when relevant information
was available. Straight lines are linear fits through the spectral
parameters.

tion 2.3, the shape parameter is particularly sensitive to the
details of included microphysics.

We next repeat the exercise for collapse to black holes,
shown as solid symbols in Figure 5. For these, the time in-
tegral is performed until the moment of black hole forma-
tion. For consistency, we collect simulations from the liter-
ature that adopt a LS EOS with K = 220 MeV. Hempel
et al. (2012) simulated the collapse of the solar metallic-
ity 40M� star of WW95 updated in Heger et al. (2001),
whose ⇠2.5 ⇡ 0.59. Nakazato et al. (2013) followed black hole
formation in their low metal 30M� progenitor, whose com-
pactness is ⇠2.5 ⇡ 0.74 (private communication). Hudepohl
(2014) simulated the collapse of the solar metal 25M� and
40M� progenitors of WHW02, with compactness ⇠2.5 ⇡ 0.31

and ⇠2.5 ⇡ 026, respectively.
To this list we add simulations of the solar metallicity

40M� star of WW95 with ⇠2.5 ⇡ 0.55 (note the di↵erent
compactness from the version updated in Heger et al. 2001),
as well as the 33M� and 35M� zero-metallicity progenitors
of WHW02 with ⇠2.5 ⇡ 0.39 and 0.52, respectively. Due to
the limited number of black hole forming collapse simula-
tions, we fit the neutrino spectral parameters by a linear
function of ⇠2.5, separately for ⌫e, ⌫̄e, and ⌫x . These are
shown by the solid lines in Figure 5. We find the neutrino
energetics tend to decrease with compactness, which can be
understood by the fact larger compactness progenitors have
shorter durations for black hole formation; it is well approx-
imated as / ⇠�3/2 (e.g., O’Connor & Ott 2011). Although

the shorter duration is partially compensated by higher lu-
minosities, the duration dominates the overall e↵ect. The
neutrino mean energies show a flat (for ⌫e and ⌫̄e) or rise
(for ⌫x) with compactness. The rise in ⌫x mean energy is
the hallmark signature of black hole formation: the rapid
mass accretion increases the protoneutron star density and
temperature, which is reflected in ⌫x ; the other flavors by
comparison have larger neutrinosphere radii and are less af-
fected. For example, the ⌫e, ⌫̄e, and ⌫x neutrinosphere radii
are 60, 58, and 30 km for the neutrino energy of 34 MeV at
400 msec after bounce in the case of 35M�. The protoneu-
tron star radii shrinks to ⇠30 km (⇢ > 10

10 g/cm3) by this
time. The shape parameter shows a weak tendency to in-
crease with compactness, which can be understood by the
decrease of duration time with compactness. This is because
the shape parameter has initially high values and a plateau
of low values in the late phase, so shorter duration time re-
sults in larger values of the time-integrated shape parameter.

3.2 IMF-weighted average neutrino spectrum

The average neutrino spectrum per core collapse, dN/dE,
can be derived by evaluating the contribution of a given pro-
genitor by the initial mass function (IMF). Since the IMF
falls steeply with progenitor mass, contributions from lower
mass progenitors become important. We use the ZAMS mass
bins used in WHW02, which runs from 10.8M� to 75M�.
Progenitors with initial masses below this range evolve and
collapse as ONeMg cores (Jones et al. 2013), and is an
important population of the DSNB (e.g., Mathews et al.
2014). We include this population based on the long-term
core-collapse simulation of Hudepohl et al. (2010) who used
the 8.8M� progenitor of Nomoto (1984, 1987). The time-
integrated neutrino spectral parameters (not shown in Fig-
ure 3) are (E tot

⌫ , hE⌫i, h↵i) = (2.07, 8.05, 2.53), (2.08, 9.13, 1.89),
and (2.32, 9.83, 1.43) for ⌫e, ⌫̄e, and ⌫x , respectively, in the
same units are shown in Figure 3. For progenitors above
75M� we extend the 75M� mass bin to 100M�.

The average neutrino spectrum is then obtained as,
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where �Mi is the mass range of mass bin i,  (M) = dn/dM
is the IMF, and fi(E) is the spectrum as defined in Eq. (12)
with neutrino spectral parameters (E tot

⌫ , hE⌫i, h↵i) for the
core collapse of a progenitor of mass Mi . Since we charac-
terize the spectral parameters in compactness, yet the abun-
dance of progenitors is determined by its ZAMS mass, we re-
quire knowledge of the distribution of compactness in mass,
⇠(M). We adopt the distribution from the pre-supernova
models of WHW02, but explore other possibilities later.
Finally, we adopt a Salpeter IMF with  (M) / M⌘ with
⌘ = �2.35 in the mass range 8–100M�, but explore a liberal
range from �2.15 to �2.45 (Bastian et al. 2010) in our final
calculations.

The resulting average DSNB flux is shown by the solid
curves in Figure 6, for the ⌫̄e (top panel) and ⌫x (bottom
panel). The average ⌫̄e spectrum can be well modeled by the
pinched Fermi-Dirac spectral function with total energetics
4.3⇥ 10

52 erg, mean energy 14.6 MeV, and shape parameter
3.3. The ⌫x depends on the assumed shape parameter. In
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Figure 5. Same as Figure 3 but for failed explosions. Note the
di↵erent ranges in both horizontal and vertical axes. From small
to large compactness, points represent the solar metal 40M�
of WHW02, solar metal 25M� of WHW02, zero metal 33M�
of WHW02, zero metal 35M� of WHW02, solar metal 40M�
of WW95, solar metal 40M� of WW95 updated in Heger et
al. (2001), and low metal 30M� of Nakazato et al. (2013). Spec-
tral shape parameter are shown only when relevant information
was available. Straight lines are linear fits through the spectral
parameters.

tion 2.3, the shape parameter is particularly sensitive to the
details of included microphysics.

We next repeat the exercise for collapse to black holes,
shown as solid symbols in Figure 5. For these, the time in-
tegral is performed until the moment of black hole forma-
tion. For consistency, we collect simulations from the liter-
ature that adopt a LS EOS with K = 220 MeV. Hempel
et al. (2012) simulated the collapse of the solar metallic-
ity 40M� star of WW95 updated in Heger et al. (2001),
whose ⇠2.5 ⇡ 0.59. Nakazato et al. (2013) followed black hole
formation in their low metal 30M� progenitor, whose com-
pactness is ⇠2.5 ⇡ 0.74 (private communication). Hudepohl
(2014) simulated the collapse of the solar metal 25M� and
40M� progenitors of WHW02, with compactness ⇠2.5 ⇡ 0.31

and ⇠2.5 ⇡ 026, respectively.
To this list we add simulations of the solar metallicity

40M� star of WW95 with ⇠2.5 ⇡ 0.55 (note the di↵erent
compactness from the version updated in Heger et al. 2001),
as well as the 33M� and 35M� zero-metallicity progenitors
of WHW02 with ⇠2.5 ⇡ 0.39 and 0.52, respectively. Due to
the limited number of black hole forming collapse simula-
tions, we fit the neutrino spectral parameters by a linear
function of ⇠2.5, separately for ⌫e, ⌫̄e, and ⌫x . These are
shown by the solid lines in Figure 5. We find the neutrino
energetics tend to decrease with compactness, which can be
understood by the fact larger compactness progenitors have
shorter durations for black hole formation; it is well approx-
imated as / ⇠�3/2 (e.g., O’Connor & Ott 2011). Although

the shorter duration is partially compensated by higher lu-
minosities, the duration dominates the overall e↵ect. The
neutrino mean energies show a flat (for ⌫e and ⌫̄e) or rise
(for ⌫x) with compactness. The rise in ⌫x mean energy is
the hallmark signature of black hole formation: the rapid
mass accretion increases the protoneutron star density and
temperature, which is reflected in ⌫x ; the other flavors by
comparison have larger neutrinosphere radii and are less af-
fected. For example, the ⌫e, ⌫̄e, and ⌫x neutrinosphere radii
are 60, 58, and 30 km for the neutrino energy of 34 MeV at
400 msec after bounce in the case of 35M�. The protoneu-
tron star radii shrinks to ⇠30 km (⇢ > 10

10 g/cm3) by this
time. The shape parameter shows a weak tendency to in-
crease with compactness, which can be understood by the
decrease of duration time with compactness. This is because
the shape parameter has initially high values and a plateau
of low values in the late phase, so shorter duration time re-
sults in larger values of the time-integrated shape parameter.

3.2 IMF-weighted average neutrino spectrum

The average neutrino spectrum per core collapse, dN/dE,
can be derived by evaluating the contribution of a given pro-
genitor by the initial mass function (IMF). Since the IMF
falls steeply with progenitor mass, contributions from lower
mass progenitors become important. We use the ZAMS mass
bins used in WHW02, which runs from 10.8M� to 75M�.
Progenitors with initial masses below this range evolve and
collapse as ONeMg cores (Jones et al. 2013), and is an
important population of the DSNB (e.g., Mathews et al.
2014). We include this population based on the long-term
core-collapse simulation of Hudepohl et al. (2010) who used
the 8.8M� progenitor of Nomoto (1984, 1987). The time-
integrated neutrino spectral parameters (not shown in Fig-
ure 3) are (E tot

⌫ , hE⌫i, h↵i) = (2.07, 8.05, 2.53), (2.08, 9.13, 1.89),
and (2.32, 9.83, 1.43) for ⌫e, ⌫̄e, and ⌫x , respectively, in the
same units are shown in Figure 3. For progenitors above
75M� we extend the 75M� mass bin to 100M�.

The average neutrino spectrum is then obtained as,
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where �Mi is the mass range of mass bin i,  (M) = dn/dM
is the IMF, and fi(E) is the spectrum as defined in Eq. (12)
with neutrino spectral parameters (E tot

⌫ , hE⌫i, h↵i) for the
core collapse of a progenitor of mass Mi . Since we charac-
terize the spectral parameters in compactness, yet the abun-
dance of progenitors is determined by its ZAMS mass, we re-
quire knowledge of the distribution of compactness in mass,
⇠(M). We adopt the distribution from the pre-supernova
models of WHW02, but explore other possibilities later.
Finally, we adopt a Salpeter IMF with  (M) / M⌘ with
⌘ = �2.35 in the mass range 8–100M�, but explore a liberal
range from �2.15 to �2.45 (Bastian et al. 2010) in our final
calculations.

The resulting average DSNB flux is shown by the solid
curves in Figure 6, for the ⌫̄e (top panel) and ⌫x (bottom
panel). The average ⌫̄e spectrum can be well modeled by the
pinched Fermi-Dirac spectral function with total energetics
4.3⇥ 10

52 erg, mean energy 14.6 MeV, and shape parameter
3.3. The ⌫x depends on the assumed shape parameter. In
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to large compactness, points represent the solar metal 40M�
of WHW02, solar metal 25M� of WHW02, zero metal 33M�
of WHW02, zero metal 35M� of WHW02, solar metal 40M�
of WW95, solar metal 40M� of WW95 updated in Heger et
al. (2001), and low metal 30M� of Nakazato et al. (2013). Spec-
tral shape parameter are shown only when relevant information
was available. Straight lines are linear fits through the spectral
parameters.

tion 2.3, the shape parameter is particularly sensitive to the
details of included microphysics.

We next repeat the exercise for collapse to black holes,
shown as solid symbols in Figure 5. For these, the time in-
tegral is performed until the moment of black hole forma-
tion. For consistency, we collect simulations from the liter-
ature that adopt a LS EOS with K = 220 MeV. Hempel
et al. (2012) simulated the collapse of the solar metallic-
ity 40M� star of WW95 updated in Heger et al. (2001),
whose ⇠2.5 ⇡ 0.59. Nakazato et al. (2013) followed black hole
formation in their low metal 30M� progenitor, whose com-
pactness is ⇠2.5 ⇡ 0.74 (private communication). Hudepohl
(2014) simulated the collapse of the solar metal 25M� and
40M� progenitors of WHW02, with compactness ⇠2.5 ⇡ 0.31

and ⇠2.5 ⇡ 026, respectively.
To this list we add simulations of the solar metallicity

40M� star of WW95 with ⇠2.5 ⇡ 0.55 (note the di↵erent
compactness from the version updated in Heger et al. 2001),
as well as the 33M� and 35M� zero-metallicity progenitors
of WHW02 with ⇠2.5 ⇡ 0.39 and 0.52, respectively. Due to
the limited number of black hole forming collapse simula-
tions, we fit the neutrino spectral parameters by a linear
function of ⇠2.5, separately for ⌫e, ⌫̄e, and ⌫x . These are
shown by the solid lines in Figure 5. We find the neutrino
energetics tend to decrease with compactness, which can be
understood by the fact larger compactness progenitors have
shorter durations for black hole formation; it is well approx-
imated as / ⇠�3/2 (e.g., O’Connor & Ott 2011). Although

the shorter duration is partially compensated by higher lu-
minosities, the duration dominates the overall e↵ect. The
neutrino mean energies show a flat (for ⌫e and ⌫̄e) or rise
(for ⌫x) with compactness. The rise in ⌫x mean energy is
the hallmark signature of black hole formation: the rapid
mass accretion increases the protoneutron star density and
temperature, which is reflected in ⌫x ; the other flavors by
comparison have larger neutrinosphere radii and are less af-
fected. For example, the ⌫e, ⌫̄e, and ⌫x neutrinosphere radii
are 60, 58, and 30 km for the neutrino energy of 34 MeV at
400 msec after bounce in the case of 35M�. The protoneu-
tron star radii shrinks to ⇠30 km (⇢ > 10

10 g/cm3) by this
time. The shape parameter shows a weak tendency to in-
crease with compactness, which can be understood by the
decrease of duration time with compactness. This is because
the shape parameter has initially high values and a plateau
of low values in the late phase, so shorter duration time re-
sults in larger values of the time-integrated shape parameter.

3.2 IMF-weighted average neutrino spectrum

The average neutrino spectrum per core collapse, dN/dE,
can be derived by evaluating the contribution of a given pro-
genitor by the initial mass function (IMF). Since the IMF
falls steeply with progenitor mass, contributions from lower
mass progenitors become important. We use the ZAMS mass
bins used in WHW02, which runs from 10.8M� to 75M�.
Progenitors with initial masses below this range evolve and
collapse as ONeMg cores (Jones et al. 2013), and is an
important population of the DSNB (e.g., Mathews et al.
2014). We include this population based on the long-term
core-collapse simulation of Hudepohl et al. (2010) who used
the 8.8M� progenitor of Nomoto (1984, 1987). The time-
integrated neutrino spectral parameters (not shown in Fig-
ure 3) are (E tot

⌫ , hE⌫i, h↵i) = (2.07, 8.05, 2.53), (2.08, 9.13, 1.89),
and (2.32, 9.83, 1.43) for ⌫e, ⌫̄e, and ⌫x , respectively, in the
same units are shown in Figure 3. For progenitors above
75M� we extend the 75M� mass bin to 100M�.

The average neutrino spectrum is then obtained as,
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where �Mi is the mass range of mass bin i,  (M) = dn/dM
is the IMF, and fi(E) is the spectrum as defined in Eq. (12)
with neutrino spectral parameters (E tot

⌫ , hE⌫i, h↵i) for the
core collapse of a progenitor of mass Mi . Since we charac-
terize the spectral parameters in compactness, yet the abun-
dance of progenitors is determined by its ZAMS mass, we re-
quire knowledge of the distribution of compactness in mass,
⇠(M). We adopt the distribution from the pre-supernova
models of WHW02, but explore other possibilities later.
Finally, we adopt a Salpeter IMF with  (M) / M⌘ with
⌘ = �2.35 in the mass range 8–100M�, but explore a liberal
range from �2.15 to �2.45 (Bastian et al. 2010) in our final
calculations.

The resulting average DSNB flux is shown by the solid
curves in Figure 6, for the ⌫̄e (top panel) and ⌫x (bottom
panel). The average ⌫̄e spectrum can be well modeled by the
pinched Fermi-Dirac spectral function with total energetics
4.3⇥ 10

52 erg, mean energy 14.6 MeV, and shape parameter
3.3. The ⌫x depends on the assumed shape parameter. In
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Figure 3. Neutrino emission parameters for 2D simulations: to-
tal energetics (upper panel), mean energy (middle panel), and
shape parameter (lower panel) shown for ⌫e (red circles), ⌫̄e (blue
squares), and ⌫x (black diamonds). Each point is a core-collapse
simulation, plotted at the value of the progenitor compactness
⇠2.5.

(2016). Since the high energy component of the neutrino
distribution is essential to determine the shape parameter,
the inclusion of improved neutrino reactions such as inelas-
tic scatterings on nucleons and nuclei, which contribute to
down-scattering of high energy neutrinos, is important for
the detailed prediction of the neutrino spectra.

3 DSNB PREDICTION AND DETECTION

3.1 Characterizing the neutrino emission

For each 2D core-collapse simulation, we estimate the to-
tal energy liberated in the form of neutrinos and the flux-
weighted mean neutrino energy as,

E tot
⌫ =

π
L⌫(t)dt , (10)

hE⌫i =

Ø
E⌫(t) €N⌫(t)dtØ €N⌫(t)dt

, (11)

where €N⌫ = L⌫/E⌫ . The time integrals are performed until
100 sec post bounce. We obtain the spectral shape parameter
h↵i by fitting the time-summed neutrino spectrum to the
pinched Fermi-Dirac functional form (Keil et al. 2003),

f (E) = (1 + h↵i)(1+h↵i)
�(1 + h↵i)

E tot
⌫ E h↵i

hE⌫i2+h↵i
exp


�(1 + h↵i) E

hE⌫i

�
, (12)

where hE⌫i is fixed to the flux-weighted average neutrino
energy, Eq. (11). This yields a better spectral fit than us-
ing a flux-weighted shape parameter analogous to the mean
energy of Eq. (11).

Figure 3 shows the spectral parameters (E tot, hE⌫i, h↵i)
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Figure 4. The same as Figure 3 but showing in bold filled sym-
bols the time-integrated spectral parameters for the simulations
of Summa et al. (2016).

separately for ⌫e, ⌫̄e, and ⌫x , plotted as functions of the com-
pactness ⇠2.5 of the progenitor. The total neutrino energet-
ics show a clear increase with the progenitor compactness,
consistent with previous studies: high compactness leads to
higher mass accretion rate, which leads to larger gravita-
tional energy liberation and hence higher neutrino energet-
ics (Nakamura et al. 2015). We also see a clear hierarchy in
the total energetics in neutrino flavor, ⌫x < ⌫̄e < ⌫e. The ⌫e
is largest due to the additional contribution from the delep-
tonization of the progenitor core. For mean energy, a mild
increase with compactness is evident. We also see the usual
hierarchy with ⌫e being the lowest and ⌫x being the high-
est. The shape parameter h↵i shows little variation between
di↵erent compactness or flavor, consistently falling between
3 to 4. As noted in section 2.2, we do not determine h↵i
for ⌫x due to limitations in our simulation setup. However,
as discussed in section 2.3, we expect it to be smaller than
the values for ⌫e or ⌫̄e, and we will explore values between
1.0–4.0 in this paper.

In Figure 4 we plot on the same data the time-integrated
spectral parameters for the 18 2D core-collapse simulations
of Summa et al. (2016). The same qualitative trends are
observed. For example, the hierarchy in the mean energy
and alpha with neutrino species is observed. Most impor-
tantly, the same trends with compactness are observed: rise
in the total neutrino energetics, mild increase in neutrino
average energies, and weak dependence for the shape pa-
rameter. The flavor hierarchy of the total energetics is more
modest in the Summa et al. (2016) models by construction:
since the Summa et al. (2016) simulations terminate earlier
and we assume the gravitational binding energy liberated
in the late-phase is equipartitioned in neutrino species. One
notable di↵erence is seen in the systematically lower shape
parameters. This is not surprising since as discussed in Sec-
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Figure 3. Neutrino emission parameters for 2D simulations: to-
tal energetics (upper panel), mean energy (middle panel), and
shape parameter (lower panel) shown for ⌫e (red circles), ⌫̄e (blue
squares), and ⌫x (black diamonds). Each point is a core-collapse
simulation, plotted at the value of the progenitor compactness
⇠2.5.

(2016). Since the high energy component of the neutrino
distribution is essential to determine the shape parameter,
the inclusion of improved neutrino reactions such as inelas-
tic scatterings on nucleons and nuclei, which contribute to
down-scattering of high energy neutrinos, is important for
the detailed prediction of the neutrino spectra.

3 DSNB PREDICTION AND DETECTION

3.1 Characterizing the neutrino emission

For each 2D core-collapse simulation, we estimate the to-
tal energy liberated in the form of neutrinos and the flux-
weighted mean neutrino energy as,

E tot
⌫ =

π
L⌫(t)dt , (10)

hE⌫i =

Ø
E⌫(t) €N⌫(t)dtØ €N⌫(t)dt

, (11)

where €N⌫ = L⌫/E⌫ . The time integrals are performed until
100 sec post bounce. We obtain the spectral shape parameter
h↵i by fitting the time-summed neutrino spectrum to the
pinched Fermi-Dirac functional form (Keil et al. 2003),

f (E) = (1 + h↵i)(1+h↵i)
�(1 + h↵i)
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where hE⌫i is fixed to the flux-weighted average neutrino
energy, Eq. (11). This yields a better spectral fit than us-
ing a flux-weighted shape parameter analogous to the mean
energy of Eq. (11).

Figure 3 shows the spectral parameters (E tot, hE⌫i, h↵i)
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bols the time-integrated spectral parameters for the simulations
of Summa et al. (2016).

separately for ⌫e, ⌫̄e, and ⌫x , plotted as functions of the com-
pactness ⇠2.5 of the progenitor. The total neutrino energet-
ics show a clear increase with the progenitor compactness,
consistent with previous studies: high compactness leads to
higher mass accretion rate, which leads to larger gravita-
tional energy liberation and hence higher neutrino energet-
ics (Nakamura et al. 2015). We also see a clear hierarchy in
the total energetics in neutrino flavor, ⌫x < ⌫̄e < ⌫e. The ⌫e
is largest due to the additional contribution from the delep-
tonization of the progenitor core. For mean energy, a mild
increase with compactness is evident. We also see the usual
hierarchy with ⌫e being the lowest and ⌫x being the high-
est. The shape parameter h↵i shows little variation between
di↵erent compactness or flavor, consistently falling between
3 to 4. As noted in section 2.2, we do not determine h↵i
for ⌫x due to limitations in our simulation setup. However,
as discussed in section 2.3, we expect it to be smaller than
the values for ⌫e or ⌫̄e, and we will explore values between
1.0–4.0 in this paper.

In Figure 4 we plot on the same data the time-integrated
spectral parameters for the 18 2D core-collapse simulations
of Summa et al. (2016). The same qualitative trends are
observed. For example, the hierarchy in the mean energy
and alpha with neutrino species is observed. Most impor-
tantly, the same trends with compactness are observed: rise
in the total neutrino energetics, mild increase in neutrino
average energies, and weak dependence for the shape pa-
rameter. The flavor hierarchy of the total energetics is more
modest in the Summa et al. (2016) models by construction:
since the Summa et al. (2016) simulations terminate earlier
and we assume the gravitational binding energy liberated
in the late-phase is equipartitioned in neutrino species. One
notable di↵erence is seen in the systematically lower shape
parameters. This is not surprising since as discussed in Sec-
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Figure 5. Same as Figure 3 but for failed explosions. Note the
di↵erent ranges in both horizontal and vertical axes. From small
to large compactness, points represent the solar metal 40M�
of WHW02, solar metal 25M� of WHW02, zero metal 33M�
of WHW02, zero metal 35M� of WHW02, solar metal 40M�
of WW95, solar metal 40M� of WW95 updated in Heger et
al. (2001), and low metal 30M� of Nakazato et al. (2013). Spec-
tral shape parameter are shown only when relevant information
was available. Straight lines are linear fits through the spectral
parameters.

tion 2.3, the shape parameter is particularly sensitive to the
details of included microphysics.

We next repeat the exercise for collapse to black holes,
shown as solid symbols in Figure 5. For these, the time in-
tegral is performed until the moment of black hole forma-
tion. For consistency, we collect simulations from the liter-
ature that adopt a LS EOS with K = 220 MeV. Hempel
et al. (2012) simulated the collapse of the solar metallic-
ity 40M� star of WW95 updated in Heger et al. (2001),
whose ⇠2.5 ⇡ 0.59. Nakazato et al. (2013) followed black hole
formation in their low metal 30M� progenitor, whose com-
pactness is ⇠2.5 ⇡ 0.74 (private communication). Hudepohl
(2014) simulated the collapse of the solar metal 25M� and
40M� progenitors of WHW02, with compactness ⇠2.5 ⇡ 0.31

and ⇠2.5 ⇡ 026, respectively.
To this list we add simulations of the solar metallicity

40M� star of WW95 with ⇠2.5 ⇡ 0.55 (note the di↵erent
compactness from the version updated in Heger et al. 2001),
as well as the 33M� and 35M� zero-metallicity progenitors
of WHW02 with ⇠2.5 ⇡ 0.39 and 0.52, respectively. Due to
the limited number of black hole forming collapse simula-
tions, we fit the neutrino spectral parameters by a linear
function of ⇠2.5, separately for ⌫e, ⌫̄e, and ⌫x . These are
shown by the solid lines in Figure 5. We find the neutrino
energetics tend to decrease with compactness, which can be
understood by the fact larger compactness progenitors have
shorter durations for black hole formation; it is well approx-
imated as / ⇠�3/2 (e.g., O’Connor & Ott 2011). Although

the shorter duration is partially compensated by higher lu-
minosities, the duration dominates the overall e↵ect. The
neutrino mean energies show a flat (for ⌫e and ⌫̄e) or rise
(for ⌫x) with compactness. The rise in ⌫x mean energy is
the hallmark signature of black hole formation: the rapid
mass accretion increases the protoneutron star density and
temperature, which is reflected in ⌫x ; the other flavors by
comparison have larger neutrinosphere radii and are less af-
fected. For example, the ⌫e, ⌫̄e, and ⌫x neutrinosphere radii
are 60, 58, and 30 km for the neutrino energy of 34 MeV at
400 msec after bounce in the case of 35M�. The protoneu-
tron star radii shrinks to ⇠30 km (⇢ > 10

10 g/cm3) by this
time. The shape parameter shows a weak tendency to in-
crease with compactness, which can be understood by the
decrease of duration time with compactness. This is because
the shape parameter has initially high values and a plateau
of low values in the late phase, so shorter duration time re-
sults in larger values of the time-integrated shape parameter.

3.2 IMF-weighted average neutrino spectrum

The average neutrino spectrum per core collapse, dN/dE,
can be derived by evaluating the contribution of a given pro-
genitor by the initial mass function (IMF). Since the IMF
falls steeply with progenitor mass, contributions from lower
mass progenitors become important. We use the ZAMS mass
bins used in WHW02, which runs from 10.8M� to 75M�.
Progenitors with initial masses below this range evolve and
collapse as ONeMg cores (Jones et al. 2013), and is an
important population of the DSNB (e.g., Mathews et al.
2014). We include this population based on the long-term
core-collapse simulation of Hudepohl et al. (2010) who used
the 8.8M� progenitor of Nomoto (1984, 1987). The time-
integrated neutrino spectral parameters (not shown in Fig-
ure 3) are (E tot

⌫ , hE⌫i, h↵i) = (2.07, 8.05, 2.53), (2.08, 9.13, 1.89),
and (2.32, 9.83, 1.43) for ⌫e, ⌫̄e, and ⌫x , respectively, in the
same units are shown in Figure 3. For progenitors above
75M� we extend the 75M� mass bin to 100M�.

The average neutrino spectrum is then obtained as,

dN
dE
=
’
i

Ø
�Mi

 (M)dMØ
100

8
 (M)dM

fi(E) , (13)

where �Mi is the mass range of mass bin i,  (M) = dn/dM
is the IMF, and fi(E) is the spectrum as defined in Eq. (12)
with neutrino spectral parameters (E tot

⌫ , hE⌫i, h↵i) for the
core collapse of a progenitor of mass Mi . Since we charac-
terize the spectral parameters in compactness, yet the abun-
dance of progenitors is determined by its ZAMS mass, we re-
quire knowledge of the distribution of compactness in mass,
⇠(M). We adopt the distribution from the pre-supernova
models of WHW02, but explore other possibilities later.
Finally, we adopt a Salpeter IMF with  (M) / M⌘ with
⌘ = �2.35 in the mass range 8–100M�, but explore a liberal
range from �2.15 to �2.45 (Bastian et al. 2010) in our final
calculations.

The resulting average DSNB flux is shown by the solid
curves in Figure 6, for the ⌫̄e (top panel) and ⌫x (bottom
panel). The average ⌫̄e spectrum can be well modeled by the
pinched Fermi-Dirac spectral function with total energetics
4.3⇥ 10

52 erg, mean energy 14.6 MeV, and shape parameter
3.3. The ⌫x depends on the assumed shape parameter. In
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Figure 5. Same as Figure 3 but for failed explosions. Note the
di↵erent ranges in both horizontal and vertical axes. From small
to large compactness, points represent the solar metal 40M�
of WHW02, solar metal 25M� of WHW02, zero metal 33M�
of WHW02, zero metal 35M� of WHW02, solar metal 40M�
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et al. (2012) simulated the collapse of the solar metallic-
ity 40M� star of WW95 updated in Heger et al. (2001),
whose ⇠2.5 ⇡ 0.59. Nakazato et al. (2013) followed black hole
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imated as / ⇠�3/2 (e.g., O’Connor & Ott 2011). Although

the shorter duration is partially compensated by higher lu-
minosities, the duration dominates the overall e↵ect. The
neutrino mean energies show a flat (for ⌫e and ⌫̄e) or rise
(for ⌫x) with compactness. The rise in ⌫x mean energy is
the hallmark signature of black hole formation: the rapid
mass accretion increases the protoneutron star density and
temperature, which is reflected in ⌫x ; the other flavors by
comparison have larger neutrinosphere radii and are less af-
fected. For example, the ⌫e, ⌫̄e, and ⌫x neutrinosphere radii
are 60, 58, and 30 km for the neutrino energy of 34 MeV at
400 msec after bounce in the case of 35M�. The protoneu-
tron star radii shrinks to ⇠30 km (⇢ > 10

10 g/cm3) by this
time. The shape parameter shows a weak tendency to in-
crease with compactness, which can be understood by the
decrease of duration time with compactness. This is because
the shape parameter has initially high values and a plateau
of low values in the late phase, so shorter duration time re-
sults in larger values of the time-integrated shape parameter.

3.2 IMF-weighted average neutrino spectrum

The average neutrino spectrum per core collapse, dN/dE,
can be derived by evaluating the contribution of a given pro-
genitor by the initial mass function (IMF). Since the IMF
falls steeply with progenitor mass, contributions from lower
mass progenitors become important. We use the ZAMS mass
bins used in WHW02, which runs from 10.8M� to 75M�.
Progenitors with initial masses below this range evolve and
collapse as ONeMg cores (Jones et al. 2013), and is an
important population of the DSNB (e.g., Mathews et al.
2014). We include this population based on the long-term
core-collapse simulation of Hudepohl et al. (2010) who used
the 8.8M� progenitor of Nomoto (1984, 1987). The time-
integrated neutrino spectral parameters (not shown in Fig-
ure 3) are (E tot

⌫ , hE⌫i, h↵i) = (2.07, 8.05, 2.53), (2.08, 9.13, 1.89),
and (2.32, 9.83, 1.43) for ⌫e, ⌫̄e, and ⌫x , respectively, in the
same units are shown in Figure 3. For progenitors above
75M� we extend the 75M� mass bin to 100M�.

The average neutrino spectrum is then obtained as,
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where �Mi is the mass range of mass bin i,  (M) = dn/dM
is the IMF, and fi(E) is the spectrum as defined in Eq. (12)
with neutrino spectral parameters (E tot

⌫ , hE⌫i, h↵i) for the
core collapse of a progenitor of mass Mi . Since we charac-
terize the spectral parameters in compactness, yet the abun-
dance of progenitors is determined by its ZAMS mass, we re-
quire knowledge of the distribution of compactness in mass,
⇠(M). We adopt the distribution from the pre-supernova
models of WHW02, but explore other possibilities later.
Finally, we adopt a Salpeter IMF with  (M) / M⌘ with
⌘ = �2.35 in the mass range 8–100M�, but explore a liberal
range from �2.15 to �2.45 (Bastian et al. 2010) in our final
calculations.

The resulting average DSNB flux is shown by the solid
curves in Figure 6, for the ⌫̄e (top panel) and ⌫x (bottom
panel). The average ⌫̄e spectrum can be well modeled by the
pinched Fermi-Dirac spectral function with total energetics
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52 erg, mean energy 14.6 MeV, and shape parameter
3.3. The ⌫x depends on the assumed shape parameter. In
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Figure 3. Neutrino emission parameters for 2D simulations: to-
tal energetics (upper panel), mean energy (middle panel), and
shape parameter (lower panel) shown for ⌫e (red circles), ⌫̄e (blue
squares), and ⌫x (black diamonds). Each point is a core-collapse
simulation, plotted at the value of the progenitor compactness
⇠2.5.

(2016). Since the high energy component of the neutrino
distribution is essential to determine the shape parameter,
the inclusion of improved neutrino reactions such as inelas-
tic scatterings on nucleons and nuclei, which contribute to
down-scattering of high energy neutrinos, is important for
the detailed prediction of the neutrino spectra.

3 DSNB PREDICTION AND DETECTION

3.1 Characterizing the neutrino emission

For each 2D core-collapse simulation, we estimate the to-
tal energy liberated in the form of neutrinos and the flux-
weighted mean neutrino energy as,

E tot
⌫ =

π
L⌫(t)dt , (10)

hE⌫i =

Ø
E⌫(t) €N⌫(t)dtØ €N⌫(t)dt

, (11)

where €N⌫ = L⌫/E⌫ . The time integrals are performed until
100 sec post bounce. We obtain the spectral shape parameter
h↵i by fitting the time-summed neutrino spectrum to the
pinched Fermi-Dirac functional form (Keil et al. 2003),

f (E) = (1 + h↵i)(1+h↵i)
�(1 + h↵i)

E tot
⌫ E h↵i

hE⌫i2+h↵i
exp


�(1 + h↵i) E

hE⌫i

�
, (12)

where hE⌫i is fixed to the flux-weighted average neutrino
energy, Eq. (11). This yields a better spectral fit than us-
ing a flux-weighted shape parameter analogous to the mean
energy of Eq. (11).

Figure 3 shows the spectral parameters (E tot, hE⌫i, h↵i)
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Figure 4. The same as Figure 3 but showing in bold filled sym-
bols the time-integrated spectral parameters for the simulations
of Summa et al. (2016).

separately for ⌫e, ⌫̄e, and ⌫x , plotted as functions of the com-
pactness ⇠2.5 of the progenitor. The total neutrino energet-
ics show a clear increase with the progenitor compactness,
consistent with previous studies: high compactness leads to
higher mass accretion rate, which leads to larger gravita-
tional energy liberation and hence higher neutrino energet-
ics (Nakamura et al. 2015). We also see a clear hierarchy in
the total energetics in neutrino flavor, ⌫x < ⌫̄e < ⌫e. The ⌫e
is largest due to the additional contribution from the delep-
tonization of the progenitor core. For mean energy, a mild
increase with compactness is evident. We also see the usual
hierarchy with ⌫e being the lowest and ⌫x being the high-
est. The shape parameter h↵i shows little variation between
di↵erent compactness or flavor, consistently falling between
3 to 4. As noted in section 2.2, we do not determine h↵i
for ⌫x due to limitations in our simulation setup. However,
as discussed in section 2.3, we expect it to be smaller than
the values for ⌫e or ⌫̄e, and we will explore values between
1.0–4.0 in this paper.

In Figure 4 we plot on the same data the time-integrated
spectral parameters for the 18 2D core-collapse simulations
of Summa et al. (2016). The same qualitative trends are
observed. For example, the hierarchy in the mean energy
and alpha with neutrino species is observed. Most impor-
tantly, the same trends with compactness are observed: rise
in the total neutrino energetics, mild increase in neutrino
average energies, and weak dependence for the shape pa-
rameter. The flavor hierarchy of the total energetics is more
modest in the Summa et al. (2016) models by construction:
since the Summa et al. (2016) simulations terminate earlier
and we assume the gravitational binding energy liberated
in the late-phase is equipartitioned in neutrino species. One
notable di↵erence is seen in the systematically lower shape
parameters. This is not surprising since as discussed in Sec-
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Figure 3. Neutrino emission parameters for 2D simulations: to-
tal energetics (upper panel), mean energy (middle panel), and
shape parameter (lower panel) shown for ⌫e (red circles), ⌫̄e (blue
squares), and ⌫x (black diamonds). Each point is a core-collapse
simulation, plotted at the value of the progenitor compactness
⇠2.5.

(2016). Since the high energy component of the neutrino
distribution is essential to determine the shape parameter,
the inclusion of improved neutrino reactions such as inelas-
tic scatterings on nucleons and nuclei, which contribute to
down-scattering of high energy neutrinos, is important for
the detailed prediction of the neutrino spectra.

3 DSNB PREDICTION AND DETECTION

3.1 Characterizing the neutrino emission

For each 2D core-collapse simulation, we estimate the to-
tal energy liberated in the form of neutrinos and the flux-
weighted mean neutrino energy as,

E tot
⌫ =

π
L⌫(t)dt , (10)

hE⌫i =

Ø
E⌫(t) €N⌫(t)dtØ €N⌫(t)dt

, (11)

where €N⌫ = L⌫/E⌫ . The time integrals are performed until
100 sec post bounce. We obtain the spectral shape parameter
h↵i by fitting the time-summed neutrino spectrum to the
pinched Fermi-Dirac functional form (Keil et al. 2003),

f (E) = (1 + h↵i)(1+h↵i)
�(1 + h↵i)
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where hE⌫i is fixed to the flux-weighted average neutrino
energy, Eq. (11). This yields a better spectral fit than us-
ing a flux-weighted shape parameter analogous to the mean
energy of Eq. (11).

Figure 3 shows the spectral parameters (E tot, hE⌫i, h↵i)
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Figure 4. The same as Figure 3 but showing in bold filled sym-
bols the time-integrated spectral parameters for the simulations
of Summa et al. (2016).

separately for ⌫e, ⌫̄e, and ⌫x , plotted as functions of the com-
pactness ⇠2.5 of the progenitor. The total neutrino energet-
ics show a clear increase with the progenitor compactness,
consistent with previous studies: high compactness leads to
higher mass accretion rate, which leads to larger gravita-
tional energy liberation and hence higher neutrino energet-
ics (Nakamura et al. 2015). We also see a clear hierarchy in
the total energetics in neutrino flavor, ⌫x < ⌫̄e < ⌫e. The ⌫e
is largest due to the additional contribution from the delep-
tonization of the progenitor core. For mean energy, a mild
increase with compactness is evident. We also see the usual
hierarchy with ⌫e being the lowest and ⌫x being the high-
est. The shape parameter h↵i shows little variation between
di↵erent compactness or flavor, consistently falling between
3 to 4. As noted in section 2.2, we do not determine h↵i
for ⌫x due to limitations in our simulation setup. However,
as discussed in section 2.3, we expect it to be smaller than
the values for ⌫e or ⌫̄e, and we will explore values between
1.0–4.0 in this paper.

In Figure 4 we plot on the same data the time-integrated
spectral parameters for the 18 2D core-collapse simulations
of Summa et al. (2016). The same qualitative trends are
observed. For example, the hierarchy in the mean energy
and alpha with neutrino species is observed. Most impor-
tantly, the same trends with compactness are observed: rise
in the total neutrino energetics, mild increase in neutrino
average energies, and weak dependence for the shape pa-
rameter. The flavor hierarchy of the total energetics is more
modest in the Summa et al. (2016) models by construction:
since the Summa et al. (2016) simulations terminate earlier
and we assume the gravitational binding energy liberated
in the late-phase is equipartitioned in neutrino species. One
notable di↵erence is seen in the systematically lower shape
parameters. This is not surprising since as discussed in Sec-
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the lower panel, a shape parameter of 3.0 is assumed, but
we will explore values in the range 1.0–4.0 in later sections.

The contribution from collapse to black holes is intro-
duced by considering a critical compactness, ⇠2.5,crit, above
which progenitors are assumed to collapse to black holes.
While this is a simplistic picture of a complex phenomenon,
our prescription is motivated by various studies showing
that large compactness is conducive to black hole formation
(e.g., O’Connor & Ott 2011). In general, the precise value
of ⇠2.5,crit will depend on the explosion mechanism and their
implementation. For the neutrino mechanism, current im-
plementations suggest values between 0.2–0.6 (O’Connor &
Ott 2011; Ugliano et al. 2012; Horiuchi et al. 2014; Pejcha &
Thompson 2015; Ertl et al. 2016). However, ongoing e↵orts
are expected to update predictions in the future. We thus
treat ⇠2.5,crit as a parameter of interest that is predicted by
simulations and to be tested by future observational data.
For the neutrino emission of failed explosions, we adopt the
functional form Eq. (12) with neutrino spectral parameters
predicted by black hole forming simulations (Figure 5).

The predicted weighted average neutrino spectrum in-
cluding contributions from collapse to black holes are shown
as non-solid lines in Figure 6. Four values of ⇠2.5,crit = 0.1,
0.2, 0.3, and 0.43 are shown. Based on the solar metallicity
progenitors of WHW02, these critical values correspond to
failed explosion fractions (the number of failed explosions
over the total number of massive stars in the mass range
8–100M�) of 45%, 17%, 5%, and 0%, respectively. Note that
the largest compactness in the WHW02 solar metallicity
stellar suite is ⇠2.5 ⇡ 0.43. Therefore, values of ⇠2.5,crit above
0.43 means no contribution from collapse to black holes in
our calculations.

The resulting spectra are the combined e↵ect of failed
explosions having lower neutrino total energies and higher
mean energies than the 2D counterparts. The smaller the
critical compactness, the larger the contribution from failed
explosions, and thus the more prominent is the high-energy
component of the mean neutrino spectrum. Adopting a
shallower (steeper) IMF increases (decreases) the empha-
sis on the most massive stars. For example, compared to the
Salpeter IMF, a slope of �2.15 implies ⇠ 30% larger repre-
sentation of the most massive stars M > 40M�. However,
the most massive stars are rare and the increase is mod-
est in absolute terms. Even for the shallow �2.15 slope and
largest failed fraction (⇠2.5,crit = 0.1), the weighted average
neutrino spectrum is only a↵ected at the few percent level
below neutrino ⇠ 30 MeV and ⇠ 15% above ⇠ 60 MeV.

The core compactness of massive stars has recently
been carefully investigated by Sukhbold & Woosley (2014)
using one-dimensional stellar evolution codes. They show
that quantitatively, the compactness of a star depends on a
range of inputs, including not only the initial stellar mass
and metallicity, but also the way mass loss and convec-
tion is handled in the code, as well as the nuclear micro-
physics implementation. However, the authors also show
that qualitatively the compactness robustly follows a non-
monotonic distribution in ZAMS mass, with a peak around
⇠ 20M�. This is the result of the interplay of the carbon-
burning shell with the carbon-depleted core, and later,
oxygen-burning shell with the oxygen-depleted core. Nev-
ertheless, the position of the peak has an uncertainty of
some ⇠ 1M� in mass (Sukhbold &Woosley 2014). To explore
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Figure 6. Weighted average neutrino spectra of ⌫̄e (top panel)
and ⌫x (bottom panel), based on 101 2D core-collapse simulations
and a collection of simulations of collapse to black holes. The rel-
ative contributions from neutron star and black hole scenarios
are determined by the critical compactness, ⇠2.5,crit; progenitors
with compactness ⇠2.5 > ⇠2.5,crit are assumed to collapse to black
holes. For reference, the fraction of black hole collapses are 45%
(⇠2.5,crit = 0.1), 17% (⇠2.5,crit = 0.2), 5% (⇠2.5,crit = 0.3), and 0%
(⇠2.5,crit = 0.43). Above ⇠2.5,crit = 0.43, there is no black hole con-
tribution.

other currently-available suites of pre-supernova progenitor
models, we determine the average neutrino flux employing
the pre-supernova models of Woosley & Heger (2007). This
suite of progenitors in general has similar or higher com-
pactness compared to WHW02, reaching a peak compact-
ness of ⇠2.5 ⇡ 0.54 compared to 0.43 for WHW02. Also, a
second peak in compactness at ⇠ 40M� is evident, in addi-
tion to the peak around ⇠ 20M� that is seen in WHW02
and Sukhbold & Woosley (2014). These features manifest as
a harder predicted average neutrino spectra, because higher
compactness yields higher neutrino luminosities and mean
energies (Figure 3). In Section 3.4, we show how this a↵ects
the DSNB event rate prediction.

3.3 DSNB flux prediction

The DSNB is determined by integrating the cosmic history
of the comoving core-collapse rate, RCC (z), by the mean neu-
trino spectrum per core collapse, dN/dE, appropriately red-
shifted, over cosmic time (see, e.g., Beacom 2010, for a recent
review),

d�
dE
= c

π
RCC(z)

dN
dE 0 (1 + z)

���� dt
dz

���� dz , (14)

where E 0 = E(1+z) and |dz/dt | = H0(1+z)[⌦m(1+z)3+⌦⇤]1/2.
We include contributions out to a redshift of 5, which is
su�ciently large to include the majority of the DSNB flux
(Ando & Sato 2004) for ⇠ 10 MeV neutrino energy threshold.
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Figure 7. Predicted DSNB event rate per 10 years in HK
(374 kton inner volume) as functions of the critical compactness
⇠2.5,crit, for full ⌫̄e survival (blue) and no ⌫̄e survival (black). In
general, oscillations will mix these two, the exact ratios depending
on scenario (e.g., the MSW mixing is shown in Figure 8). Shown
are the variations of our calculations due to (i) the core-collapse
rate (light blue band), (ii) the IMF (dark blue band), (iii) pre-
supernova progenitor compactness (blue dashed line), (iv) core-
collapse simulation setup (blue dot-dashed line) and (v) the spec-
tral shape parameter of ⌫x (black band). The uncertainties shown
for full ⌫̄e survival (blue bands and curves) will equally apply for
no ⌫̄e survival (black), but are not shown for visual clarity.

namely, in the extrapolation to late-times. For the present
purpose, we stress the fact that the predicted DSNB event
rates show a similar rise with smaller critical compactness,
turning around ⇠2.5,crit ⇠ 0.25.

The panels in Figure 8 show results after MSW oscilla-
tions, for SK (top panel) and HK (bottom panel). The error
bands show root-N errors only. The predicted rates rise with
smaller ⇠2.5,crit, but the uncertainty in SK is large, even af-
ter 10 years operation. The predictions for SK and HK show
some subtle shape di↵erences, which arises due to the di↵er-
ent detection thresholds. Since HK is proportionally more
dependent on the higher energy neutrinos, the higher mean
energies of ⌫x become relatively more important. HK, with
su�cient event statistics, can test small values of the critical
compactness.

3.5 Impact of nuclear EOS

In addition to the structure of the progenitor, the EOS of
dense matter strongly impacts predictions of the neutrino
signals in the collapse to black holes. While the compact-
ness in large part is reflective of the accretion rate and thus
the evolution of the mass of the protoneutron star, the EOS
determines the critical mass of the fattening central com-
pact object at which dynamical collapse occurs. The maxi-
mum mass that can be supported depends on the sti↵ness of
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Figure 8. The same as Figure 7, but showing the predictions
for MSW mixing implementation for 10 years in SK (22.5 kton
inner volume, top panel) and 10 years in HK (374 kton inner
volume, bottom panel), with each bar width reflecting the statis-
tical square-root N error only, adopting the predictions using the
WHW02 suite of progenitors and assuming ⌫x shape parameter
of 3.0. In all predictions, small critical compactness leads to more
massive stars collapsing to black holes, thereby increasing the
DSNB event rate. Apart from a simple normalization, slight dif-
ferences appear between the SK and HK dependences on ⇠2.5,crit,
due to the di↵erent detection threshold.

the EOS and the amount of trapped leptons, as well as the
temperature in the accreting protoneutron star. A soft EOS
leads to a compact protoneutron star with high density and
temperature. This may lead to a high accretion luminosity
of ⌫e and ⌫̄e from the gravitational energy release and a high
mean energy of ⌫µ and ⌫̄µ due to the di↵usion from the high
temperature core.

For example, the critical mass of the protoneutron star
ranges between a lower value of 2.1M� in baryon mass for the
case of LS EOS and up to 2.7M� for the sti↵er Shen EOS.
This uncertainty results in a factor of ⇠ 2 di↵erence in the
time duration till the black hole formation (Sumiyoshi et al.
2006, 2007; O’Connor & Ott 2011), and therefore, di↵erent
values for the total neutrino energies of the black hole com-
ponent in the prediction of the DSNB. Indeed, adopting the
sti↵er Shen EOS, Lunardini (2009) and Keehn & Lunardini
(2012) have shown that the failed explosion contribution can
double the predicted DSNB events, when a failed fraction of
0.22 is adopted. In fact, as long as other uncertainties can
be controlled, this would open the intriguing possibility to
assess the EOS from the DSNB.

Further investigations of the DSNB by focusing on the
influence of EOS are clearly needed. In particular, it is im-
portant to consider the outcome using new sets of EOS ta-
bles (e.g., Oertel et al. 2016). These EOSs are carefully tuned
to match symmetry energy measurements by recent nuclear
experiments, neutron star radii extracted from astronomical
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Predicted DSNB event rate per 10 years 

in SK (22.5 kton inner volume, top panel) 

and in HK (374 kton inner volume, 

bottom panel) as functions of the critical 

compactness. 
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HKで10年かければξcritをかなり制限できる.
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Research Plan

先行研究の問題点を解決.
1. 使用している数値コードが古い
2. 空間２次元計算に基づいている

数値コードのアップデート
ニュートリノ輸送：

2-flavor IDSA + Leakage → 3-flavor IDSA
重力ポテンシャル：

Newtonian → effective GR (Marek+’06)
ニュートリノ反応：

古典的 (Bruenn’85) → 最新のセット (Kotake+’18)

2.2. Neutrino Opacities

With regard to the neutrino opacities, our baseline model
(set1; see Table 1) employs the standard weak interaction set
given in Bruenn (1985) plus nucleon–nucleon bremsstrahlung
(Hannestad & Raffelt 1998; see also Rampp & Janka 2002 for
detailed implementation schemes). Note that in set1, ion–ion
correlations for neutrino scattering on heavy nuclei (Horowitz
1997) and the correction form factor (Mezzacappa & Bruenn
1993a; Rampp & Janka 2002) are also included. In 1D runs, all
of the following updates are basically added individually
to set1.

In set2 (see Table 1), the electron-capture (EC) rate on the
nuclei in set1 (Fuller et al. 1982) is replaced with the currently
most elaborate one by Juodagalvis et al. (2010), which is a
significant extension of the EC rate by Langanke et al. (2003;
see Section 2). In set3, electron–neutrino pair annihilation into
N U neutrinos (set3a in Table 1) and N U–neutrino scattering
on electron (anti)neutrinos (set3b; Buras et al. 2003) are added
to set1 (see Appendices A and B for details). In set4a, medium
modifications to electron(/positron) capture reactions on
proton(/neutron) are taken into account (Martínez-Pinedo
et al. 2012; Roberts et al. 2012; Hempel 2015; Roberts &
Reddy 2017) at the mean-field level (Reddy et al. 1998; see
Section 3.4). Set4b includes the medium-dependent suppres-
sion of bremsstrahlung (Fischer 2016, their Equation (11)).

In set5a, inelastic contributions and weak magnetism
corrections are included following Horowitz (2002) for the
charged-current absorption and neutral-current scattering
processes. Set5b includes a correction for the effective nucleon
mass (Reddy et al. 1999). Following Buras et al. (2006b, their
Equation (A.1)), we replace the nucleon mass (mN) with the
density-dependent nucleon mass ( * S( )mN ), which changes the
neutrino opacities accordingly.
In set6a, the quenching of the axial-vector coupling constant

at high densities (Carter & Prakash 2002; e.g., Equation (A.9)
in Buras et al. 2006b) is included but using more recent fitting
formula (e.g., Equation (8) in Fischer 2016). In set6b, we
employ the formulas suggested by Horowitz et al. (2017) that
account for virial effects at low density and the many-body
correlations at high densities (their Equations (36)–(39)) for the
neutral-current axial response. Finally, in set6c, a strangeness-
dependent contribution to the axial-vector coupling constant
(Horowitz 2002) with � �g 0.1A

s (Hobbs et al. 2016) is
considered for neutrino–nucleon scattering.
Note that even the full set in Table 1 is in no way complete.

The inclusion of muons significantly affects explodability
(Bollig et al. 2017), and a proper treatment of nucleon
kinematics (Reddy et al. 1998) is not taken into account in
our full set (the roles of nuclear de-excitation (Fischer
et al. 2013) and light nuclear clusters (Sumiyoshi & Röpke
2008) are also not included yet). These updates are another
major undertaking, which we leave for future work.

2.3. Three-flavor IDSA Scheme

The IDSA scheme splits the neutrino distribution function
( f ) into two components, � �f f ft s, with f t and f s

representing streaming and trapped neutrinos, respectively;
both are solved using separate numerical techniques (see
Liebendörfer et al. 2009 for details). In the original (two-
neutrino-flavor) IDSA scheme, a steady-state approximation,

�s s �( ) ( )f t 0s , where ò represents the neutrino energy in the
comoving frame, is assumed for the streaming neutrinos. Thus,
we will deal with a Poisson-type equation to find the solution of
f s (e.g., Equation (10) in Liebendörfer et al. 2009). This is
relatively computationally expensive, especially in multi-D
simulations.
To get around this problem, we directly solve for the

evolution of streaming neutrinos (e.g., Equation (1) of
Takiwaki et al. 2014). In this work, we further incorporate
GR effects, approximately following Rampp & Janka (2002)
and O’Connor & Couch (2015), as follows:
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where � s and � s correspond to the radiation energy and flux of
the streaming particle, and + represents the source term that is a
functional of the effective neutrino emissivity ( ĵ ), absorptivity (D̂),

Table 1
Summary of Neutrino Opacity Input in Our 1D Runs with References

Model Weak Process or Modification References

set1 O �Un e pe Bruenn (1985)
O �U¯ p e ne Bruenn (1985)
O a �UA e Ae Bruenn (1985)
O OUN N Bruenn (1985)
O OUA A Bruenn (1985),

Horowitz (1997)
O Oo oUe e Bruenn (1985)

O O� � U ¯e e Bruenn (1985)
OOU ¯NN NN Hannestad &

Raffelt (1998)

set2 O a�UA e Ae Juodagalvis et al. (2010)

set3a O O O O� �U¯ ¯e e x x Buras et al. (2003),
Fischer et al. (2009)

set3b O O O O O O� a � a aU( ¯ ) (¯ )x e e x e e Buras et al. (2003),
Fischer et al. (2009)

set4a O �Un e pe , O �U¯ p e ne Martínez-Pinedo
et al. (2012)

set4b *OOU ¯NN NN Fischer (2016)

set5a O �Un e pe , O �U¯ p e ne , O OUN N Horowitz (2002)
set5b *lm mN N Reddy et al. (1999)

set6a *lg gA A Fischer (2016)
set6b O OUN N (many-body and virial

corrections)
Horowitz et al. (2017)

set6c O OUN N (strangeness contribution) Horowitz (2002)

Note.The symbols �e , �e , n, p, and A denote electrons, positirons, free
neutrons and protons, and heavy nuclei, respectively; the symbol N means n or
p. mN denotes nucleon mass, and the quantity with an “∗” indicates the one
with an in-medium correction. ν in the neutral-current reactions represents all
species of neutrinos (O O O¯, ,e e x), with Ox representing heavy-lepton neutrinos
(O ON U, ) and their antiparticles.
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衝撃波復活のタイミング accretion ν → diffuse ν
への遷移のタイミング

空間２次元／３次元モデルの違い ：

衝撃波復活のタイミング
〜降着フェイズ→冷却フェイズへの遷移のタイミング

衝撃波復活後の中心への fallback

爆発のしやすさ（”explodability”）
→ ξcrit.



Summary

ü超新星背景ニュートリノの検出は近い.

ü現実的な空間３次元計算で背景ニュートリノスペクトルを予測.
年間2~3モデル計算
コンパクトネスの高い／中程度／低いモデルで２次元の結果を補正

ü様々な応用が可能
超新星マルチメッセンジャー天文学
超新星率問題・赤色超巨星問題


