E02班 公募研究 現実的な3次元超新星モデルに基づく 超新星背景ニュートリノ解析

<u>中村 航(福岡大学)</u>

新学術領域「地下から解き明かす宇宙の歴史と物質の進化」 2020年度領域研究会 June. 2, 2020

Outline

✓Introduction 重力崩壊イベントからのニュートリノ、超新星背景ニュートリノ

✓ Previous Work (*Horiuchi, Sumiyoshi, KN*+'18)
 1D計算(BH) + 2D計算(超新星)で超新星背景ニュートリノを予測

✓ Research Plan
 数値コードのアップデート、空間3次元計算

✓Summary

Core-collapse of Massive Stars

Core-collapse of Massive Stars

Diffuse SN Neutrino Background (DSNB)

過去のSNが放出したニュートリノの重ね合わせ(背景ニュートリノ).

 $\frac{d\phi}{dE} = c \int R_{\rm CC}(z) \frac{dN}{dE'} (1+z) \left| \frac{dt}{dz} \right| dz$

LTC E' = E(1+z), $|dz/dt| = H_0(1+z)[\Omega_m(1+z)^3 + \Omega_\Lambda]^{1/2}$

重力崩壊(CCSN+BH)のイベント率

$$R_{\rm CC}(z) = \dot{\rho}_*(z) \frac{\int_8^{100} \psi(M) dM}{\int_{0.1}^{100} M\psi(M) dM}$$

1イベントあたりの平均ニュートリノスペクトル

dN/dE' = dN/dE(1+z)

超新星ニュートリノの直接観測: 様々に決定的な情報をもたらすがイベント率が低い. 超新星背景ニュートリノ: いったん検出器感度が検出基準に達すれば 継続的に観測可能となる.

Previous Work

"Diffuse Supernova Neutrino Background from extensive core-collapse simulations of 8–100 M_☉ progenitors" *Horiuchi, Sumiyoshi, KN+'18, MNRAS, 475, 1363*

DSNBイベントを予測するには

幅広い親星質量域を網羅する

現実的な理論計算

に基づく (failed-)SN ニュートリノ情報が必要

BHを形成するようなケースからのニュートリノ放射 ←1DGR計算 (*Sumiyoshi+'05,'06,'07,'08*)

BH Forming Event – 1D simulations

中心密度が上がり続ける.

→ ニュートリノ光度 Lv および 平均エネルギー Ev は時間とともに上昇. (CCSNとして爆発するケースより高い.)

バウンス後 数百 ms でBH形成. → ニュートリノ放出が途絶える. (爆発するケースより短い.)

 α はスペクトルの形状を表す shape parameter (pinching parameter; *Tamborra*+'12,'14).

 $f_{\nu}(E) \propto E^{\alpha} e^{-(\alpha+1)E/E_{\rm av}}$

Time evolution of neutrino spectral parameters for the core collapse of the 35Mo progenitor leading to black hole formation at 630 msec post bounce.

BH Forming Event – 1D simulations

コンパクトネス $\xi_M = \frac{M/M_{\odot}}{R(M_{\text{bary}} = M)/1000 \,\text{km}}\Big|_t$

質量の中心集中度を表すパラメータ.

ξ が大きい~質量降着率が大きい.
 → Lv や Ev は高い.
 → しかしBH形成までの時間が短い.
 → v エネルギー放出量と平均エネルギーは減少.

中心密度が上昇 → エネルギーの高いニュートリノほど出てこれない. → α は増加.

Neutrino emission parameters for 1D failed explosions. Straight lines are linear fits through the spectral parameters.

CCSN Event – 2D simulations

CCSNとして爆発するようなモデルからのニュートリノ放射は 2D計算を基に算出 (*Nakamura*+'15)

親星モデル: $M = 10.8-75 M_{\odot}, Z = Z_{\odot} 00101$ モデル (Woosley, Heger, & Weaver '02)

ニュートリノデータを時間外挿する必要. NS半径が $R(t) = R_{f} + (R_{i} - R_{f})e^{-t/t_{0}}$ で収縮していくと仮定(R_{f} = 15 km).

重力エネルギー解放率~ニュートリノ光度.

Time evolution of neutrino spectral parameters for the core collapse of the 23Mo progenitor leading to CCSN explosion.

CCSN Event – 2D simulations

爆発するか失敗してBHを形成するかで放出されるニュートリノの特徴は大きく異なる.

Neutrinos from Core-collapse Events

Neutrinos from Core-collapse Events

BH

Weighted average neutrino spectra of $\bar{v}e$, based on 101 2D core-collapse simulations and a collection of simulations of collapse to black holes.

Prediction for DSNB Detection

Super- & Hyper-KamiokandeによるSN 背景ニュートリノ検出の予測.

HKで10年かければ ξ critをかなり制限できる.

Predicted DSNB event rate per 10 years in SK (22.5 kton inner volume, top panel) and in HK (374 kton inner volume, bottom panel) as functions of the critical compactness.

Research Plan

Model

Weak Process or Modification

先行研究の問題点を解決. 1. 使用している数値コードが古い 2. 空間2次元計算に基づいている	set1	$\nu_{e} n \rightleftharpoons e^{-} p$ $\bar{\nu}_{e} p \rightleftharpoons e^{+} n$ $\nu_{e} A' \rightleftharpoons e^{-} A$ $\nu N \rightleftharpoons \nu N$ $\nu A \rightleftharpoons \nu A$
数値コードのアップデート		$ \nu e^{\pm} \rightleftharpoons \nu e^{\pm} $ $ e^{-} e^{+} \rightleftharpoons \nu \bar{\nu} $ $ NN \rightleftharpoons \nu \bar{\nu}NN $
F り ア 嗣运: 2-flavor IDSA + Leakage → 3-flavor IDSA ま + ポニンシャー	set2	$ u_e A \rightleftharpoons e^- A'$
里 カホテノジャル: Newtonian \rightarrow effective GR (<i>Marek</i> +'06)	set3a set3b	$\nu_e + \bar{\nu}_e \rightleftharpoons \nu_x + \bar{\nu}_x$ $\nu_x + \nu_e(\bar{\nu}_e) \rightleftharpoons \nu'_x + \nu'_e(\bar{\nu}'_e)$
ニュートリノ反応: 古典的 (Bruenn'85) → 最新のセット (Kotake+'18)	set4a	$ u_e n \rightleftharpoons e^- p, \bar{\nu}_e p \rightleftharpoons e^+ n $
	set4b	$NN \rightleftharpoons \nu \bar{\nu} NN^*$
	set5a	$ u_e n \rightleftharpoons e^- p, \ \bar{\nu}_e p \rightleftharpoons e^+ n, $

	$ u \ e^{\pm} \rightleftharpoons \nu \ e^{\pm}$	Bruenn (1985)
	$e^- e^+ ightarrow ar{ u}$	Bruenn (1985)
	$NN \rightleftharpoons \nu \bar{\nu} NN$	Hannestad &
		Raffelt (1998)
set2	$ u_e A \rightleftharpoons e^- A' $	Juodagalvis et al. (2010)
set3a	$ u_e + \bar{\nu}_e \rightleftharpoons \nu_x + \bar{\nu}_x $	Buras et al. (2003),
		Fischer et al. (2009)
set3b	$ u_x + \nu_e(\bar{\nu_e}) \rightleftharpoons \nu'_x + \nu'_e(\bar{\nu}'_e) $	Buras et al. (2003),
		Fischer et al. (2009)
set4a	$ u_e \ n \rightleftharpoons e^- \ p, \ \ ar{ u}_e \ p \rightleftharpoons e^+ \ n$	Martínez-Pinedo
		et al. (2012)
set4b	$NN \rightleftharpoons \nu \bar{\nu} NN^*$	Fischer (2016)
set5a	$ u_e \ n \rightleftharpoons e^- \ p, \ \ \bar{\nu}_e \ p \rightleftharpoons e^+ \ n, \nu \ N \rightleftharpoons \nu \ N $	Horowitz (2002)
set5b	$m_N \to m_N^*$	Reddy et al. (1999)
set6a	$g_A ightarrow g_A^*$	Fischer (2016)
set6b	$\nu N \rightleftharpoons \nu N$ (many-body and virial	Horowitz et al. (2017)
	corrections)	
set6c	$\nu N \rightleftharpoons \nu N$ (strangeness contribution)	Horowitz (2002)

References

Bruenn (1985) Bruenn (1985) Bruenn (1985) Bruenn (1985), Bruenn (1985), Horowitz (1997)

Research Plan

先行研究の問題点を解決. . 使用している数値コードが古い

2. 空間2次元計算に基づいている

空間2次元/3次元モデルの違い:

衝撃波復活のタイミング

~ 降着フェイズ→冷却フェイズへの遷移のタイミング

衝撃波復活後の中心への fallback

爆発のしやすさ("explodability") $\rightarrow \xi$ crit.

Summary

✓ 超新星背景ニュートリノの検出は近い.

✓現実的な空間3次元計算で背景ニュートリノスペクトルを予測. 年間2~3モデル計算 コンパクトネスの高い/中程度/低いモデルで2次元の結果を補正

✓様々な応用が可能 超新星マルチメッセンジャー天文学 超新星率問題・赤色超巨星問題