48Caを用いたニュートリノマヨラナ性の研究と 次世代高感度化技術開発

新学術領域「地下宇宙」領域研究会 第六回極低放射能技術研究会 2020年06月03日

大阪大学核物理研究センター 梅原さおり umehara@rcnp.osaka-u.ac.jp

> CANDLES collaboration 研究分担者・協力者 小川泉、仁木秀明 宮永憲明、時田 茂樹

CANDLES

@Kamioka Observatory

□ 131日の測定結果

	結果(27結晶)
0νββ検出効率	0.39 ± 0.06
事象数(exp)	0
予想されるBG量	~1.2
0νββ半減期	>6.2 × 10 ²² year
測定感度	3.6 × 10 ²² year

* 先行検出器ELEGANT VI 測定時間: 4947kg•day(2年強) 半減期 : 5.8×10²²年

梅原さおり、新学術「地下宇宙」合同研究会、2020年06月03日

データ 全Simデータ 外部放射性不純物 — 結晶放射性不純物 — 中性子捕獲γ線 エネルギースペクトルと シミュレーション Counts $Q_{\beta\beta}$ 1010 10 19_{000} 5000 5500 Energy(keV) 3500 40004500 ⁴⁸Caのニュートリノを放出しな い二重ベータ崩壊測定 →高感度測定を達成

高感度化: CaF₂結晶の入れ替え作業 「ックグラウンド事象: 大部分はCaF₂内部の不純物が起源 高純度結晶に入れ替えることで高感度化 →結晶モジュールの入れ替え 竹本、瀧平他

結晶モジュールへの

■ 新結晶導入作業

■2019年 :入れ替え作業

■2019年末 :CANDLES装置で結晶性能評価測定

高感度化:CaF₂結晶の入れ替え

□ 入れ替え前後での放射性不純物量(トリウム系列)比較

想定通りの放射性不純物量 同インゴット中の放射性不純物量ばらつきは小さい 高純度結晶開発

伊賀友輝

(2020年物理学

会年次大会)

次世代検出器開発

□ ⁴⁸CaF₂ 蛍光熱量検出器

予想されるバックグラウンド

■2vββ事象:エネルギー分解能0.5%、1トン48Caで~0.02事象/年

■結晶内部放射性不純物によるα線事象:粒子弁別

蛍光熱量検出器:10mKで使用

蛍光熱量計

軟センセ

D02班協力

次世代検出器:濃縮(偏向法)

□ 濃縮効果 装置概略 回収率 濃度 - レーザーオフ 回収板 ⁴⁰Ca ⁴⁸Ca S⁸⁰ ⁴⁸Ca办濃度[%] 原子ビーム イオン信 ⁴⁸Ca 率 ⁴⁴Ca 0.6 럿 Ξ G 0.4 30 光源 48 20 10 0.2 。 回収位置の始点[mm] 6.3 6.5 6.7 6.9 6.1 原子オーブン 到達時間[μs] るつぼ 6.5mm以上の原子を全て回収した場合・・・ 出射口 回収率 19.6% 濃度 5.5%

□より高濃度・高回収率へ→偏向角の増加が必要
■偏向用レーザーの照射システムの改良

□ 今後

■ 新ノズルなどの試験

次世代検出器:濃縮(レーザー) レーザー総研:宮永 大阪大レーザー研:時田

□ 青色半導体レーザー

- 新しい光源:2000年ごろに実用化
- 350-500nmの幅広い波長域
- □ 本研究用途に、422.7nm、狭線幅レーザー開発
 - 20%の高い電気-光変換効率で

梅原さおり、新学術「地下宇宙」合同研究会、2020年06月03日

同位体シフト

次世代検出器:濃縮(レーザー)

□ 波長計による波長安定化

■ 外部共振器型レーザー(EC-LD)の狭線幅レーザー光→ 波長計でロック

16

まとめ

低バックグラウンド測□ 蛍光熱量検出器 □ 濃縮 定 高純度結晶

- 結晶入れ替え
 - ■高純度結晶技術
- 長期測定データ解 析
- 0vββ半減期
- 2vββ半減期

- 0.5%エネルギー分解能 ■ 熱センサー
 - 粒子弁別能評価
 - 小結晶でのエネル ギー分解能
 - 実用サイズ結晶で のエネルギー分解 能

- mol/年の濃縮装置 濃縮原理検証
 - 実用濃縮装置開発
 - ■原子オーブン
- 青色レーザー高出 力化
 - ■マスターレーザー
 - ■スレーブレーザー
- qオーダーの濃縮

数meV感度の測定装置開発の基礎技術