48Caを用いたニュートリノマヨラナ性の研究と 次世代高感度化技術開発

新学術領域「地下宇宙」領域研究会 第六回極低放射能技術研究会 2020年06月03日

大阪大学核物理研究センター 梅原さおり umehara@rcnp.osaka-u.ac.jp

> CANDLES collaboration 研究分担者·協力者 小川泉、仁木秀明 宮永憲明、時田 茂樹

概要:二重ベータ崩壊次世代高感度化技術

- 48Caの二重ベータ崩壊測定
 - CANDLES III(CaF₂)
 - 0vββ測定、2vββ測定
 - ■高純度結晶
 - ⁴⁸CaF。蛍光熱量検出器
 - ■CaF₂蛍光熱量計
 - ■⁴⁸Ca濃縮

2019年「地下宇宙」研

結果

□131日の測定結果

	結果(27結晶)
0νββ検出効率	0.39 ± 0.06
事象数(exp)	0
予想されるBG量	~1.2
0νββ半減期	$>6.2 \times 10^{22}$ year
測定感度	3.6×10^{22} year

データ

<u> </u> 2νββ

エネルギースペクトルと

全Simデータ

外部放射性不純物

— 結晶放射性不純物

— 中性子捕獲γ線

* 先行検出器ELEGANT VI 測定時間: 4947kg•day(2年強)

半減期:5.8×10²²年

⁴⁸Caのニュートリノを放出しない二重ベータ崩壊測定 →高感度測定を達成

4000

4500

3500

19000

5000 5500 Energy(keV)

エネルギースペクトル

伊賀友輝 (2019年物理学 会秋季大会)

□ 新しく解析:測定時間778日分

		67 \ /				
	93結晶			高純度21結晶		
	$Q_{\beta\beta}$	4-5MeV	5.5-6.5MeV	$Q_{\beta\beta}$	4-5MeV	5.5-6.5MeV
事象数	67	148	13	6	17	1

結晶内部放射性不純物量から予想される事象数と矛盾はない

梅儿

測定半減期~半減期感度

高感度化: CaF₂結晶の入れ替え作業

- □ バックグラウンド事象:大部分はCaF₂内部の不純物が起源
 - 高純度結晶に入れ替えることで高感度化
 - ■→結晶モジュールの入れ替え

竹本、瀧平他

結晶モジュールへの

組み立て作業

■新結晶導入作業

■2019年 :入れ替え作業

■2019年末 :CANDLES装置で結晶性能評価測定

伊賀友輝 (2020年物理学 会年次大会)

高感度化: CaF₂結晶の入れ替え

□ 入れ替え前後での放射性不純物量(トリウム系列)比較

想定通りの放射性不純物量 同インゴット中の放射性不純物量ばらつきは小さい 高純度結晶開発 伏見(6月4日) 低放射能技術研究会

4100 4150 4200 4250 4300 4350 4400 4450 4500

Energy(keV)

次世代検出器開発

- □ ⁴⁸CaF₂蛍光熱量検出器
 - 予想されるバックグラウンド
 - ■2vββ事象:エネルギー分解能0.5%、1トン48Caで~0.02事象/年
 - ■結晶内部放射性不純物によるα線事象:粒子弁別

蛍光熱量検出器:10mKで使用

熱信号→

光信号

蛍光熱量検出器に 蛍光熱量計 0νββ 2νββ Φ よる粒子弁別 エネルギースペクトル 光センサ $\langle m_{\nu} \rangle = 5 meV$ **Energy resolution** 4%(FWHM) 蛍光量 <u>-</u> 2∨ββ Ονββ領域 0.5% 4.27 MeV-CaF, Ονββ

4.27 MeV

蛍光熱量検出器

エネルギースペクトル

エネルギー分解能1.86%

鉄野高之介 (TAUP2019) 韓国Kim Yong-Hamb氏ら AMoREサブグループ CANDLESサブグループ

同じ位置で起こった二つのアルファ線事象のエネルギー比

²²²Rn→²¹⁸Po(3分)→²¹⁴Pb

- □ CaF₂(pure)結晶を蛍光熱量検出器として使用
 - エネルギー分解能(σ):1.86±0.11%
 - 要分解能改善:場所依存性が原因

次世代検出器:濃縮

福井大工:仁木、小川

□ 48Caの低い天然同位体比:濃縮法の一つレーザー濃縮を紹介

装置概略

Caの吸収波長スペクトル

偏向法原理

1本のレーザーが必要

-偏向用

繰り返しての光吸収・ 放出を利用 参考:イオン化法原理

2本のレーザーが必要

- •選択的励起用
- ・イオン化用

韓国等でも開発

次世代検出器:濃縮(偏向法)

□濃縮効果

装置概略

- □より高濃度・高回収率へ→偏向角の増加が必要
 - 偏向用レーザーの照射システムの改良

原子オーブンの改良

- □これまで
 - 既成の蒸着源を使用 (ニラコ CH-14)
 - コリメータ2段の組み合わせ
 - ■ビームとしての使用は一部
 - 1回の充填量が少ない
 - 1回の充填で数時間程度
 - るつぼ部分のみの加熱

- 大型の原子オーブンの製作
 - 大型化
 - Ф36 x h60
 - 上下独立のヒーター
 - それぞれに熱電対
 - 様々な出射口を試験可能
 - ランニングコストの低減
 - 断熱ブランケット・カバーなど

今後 試験予定

出射口のテスト

- □ 簡単な先細ノズルでテスト
 - 蒸着源+コリメータ2段
 - ■上のコリメータにノズルを設置
 - TOF測定

- □今後
 - ■新ノズルなどの試験

次世代検出器:濃縮(レーザー) 大阪大レーザー

- □ 青色半導体レーザー
 - 新しい光源:2000年ごろに実用化
 - 350-500nmの幅広い波長域
- □ 本研究用途に、422.7nm、狭線幅レーザー開発
 - 20%の高い電気-光変換効率で

同位体シフト

https://av.watch.impress.co.jp/docs/20030326/sanyo.htm

Absorption spectrum of Ca at 423nm

±20 MHz → 422.792xx ±0.00001 nm (0.01-0.1pm) の波長安定性が必要

次世代検出器:濃縮(レーザー)

- □ 注入同期による高出力化
 - マスターレーザーとスレイブレーザー
 - ■外部共振器型レーザー(EC-LD)の狭線幅レーザー光
 - ■要求:0.1pmオーダーの狭線幅発振
 - ■ファブリペロー型レーザー(FP-LD)の高出カレーザー光

出力Wレベルの青色レーザー構築

- マスターレーザーの安定化
- スレイブレーザーの注入同期

→高出力化

次世代検出器:濃縮(レーザー)

- □ 波長計による波長安定化
 - 外部共振器型レーザー(EC-LD)の狭線幅レーザー光→ 波長計でロック

次世代検出器:濃縮(レーザー)

- □ 注入同期
 - ■スレーブレーザーの波長
 - ■マスターレーザーを用いて合わせる

スレーブレーザー(100mW)の波長を 温度・電流で制御する

スレーブレーザーの注入同期:OK

まとめ

- □ 低バックグラウンド測□ 蛍光熱量検出器 □ 濃縮
 - 定 高純度結晶
 - 結晶入れ替え
 - ■高純度結晶技術
 - 長期測定データ解析
 - 0vββ半減期
 - 2vββ半減期

- 0.5%エネルギー分解能
 - 熱センサー
 - 粒子弁別能評価
 - 小結晶でのエネル ギー分解能
 - 実用サイズ結晶で のエネルギー分解 能

mol/年の濃縮装置

- ■濃縮原理検証
- ■実用濃縮装置開発
 - ■原子オーブン
- 青色レーザー高出 力化
 - ■マスターレーザー
 - ■スレーブレーザー
- gオーダーの濃縮

数meV感度の測定装置開発の基礎技術