半減期10の27乗年以上の二重B崩壊観測を実現 するTL-208背景事象除去の検証

新学術領域「地下宇宙」領域研究会

2020年6月3日

宮城教育大学教育学部 東京大学宇宙線研究所 福井大学工学部 東京理科大学理工学部 東北大学金属材料研究所 福田善之、安齊太亮、亀井雄斗*、 那仁格日楽*、水畑 旭* 森山茂栄、平出克樹 小川 泉 郡司天博、塚田 学、速水良平 黒澤俊介

96Zrによるニュートリノを放出しない二重ベータ崩壊

 $\beta\beta$ emitters with $Q_{\beta\beta} > 2$ Mev

T	$O(h_{\rm e})$	A hundred (θ /) (227 + (00)		0.0
Transition	$Q_{\beta\beta}$ (keV)	Abundance ($\%$) (²³² Th = 100)		0.6
$^{110}Pd \rightarrow ^{110}Cd$	2013	12	s ire s	
$^{76}Ge \rightarrow ^{76}Se$	2040	8	bit.	
$^{124}Sn \rightarrow ^{124}Te$	2288	6	8 87	0.4
$^{136}Xe \rightarrow ^{136}Ba$	2479	9	nité	
130 Te $ ightarrow$ 130 Xe	2533	34	ä	
$^{116}Cd \rightarrow ^{116}Sn$	2802	7		0.0
$^{82}Se \rightarrow ^{82}Kr$	2995	9		0.2
$^{100}Mo \rightarrow ^{100}Ru$	3034	10		
⁹⁶ Zr → ⁹⁶ Mo	3350	3		
¹⁵⁰ Nd → ¹⁵⁰ Sm	3667	6		
$^{48}Ca \rightarrow ^{48}Ti$	4271	0.2		

 $[T_{1/2}^{0\nu}(0^+ -> 0^+)]^{-1} = G_{0\nu}(E_0,Z) |M_{0\nu}|^2 < m_{\nu}^2 >^2 / m_e^2$

 $T_{1/2} \sim a(Mt/\Delta E \cdot B)^{1/2}$ a: abundance M: target mass

t: measuring time ΔE : energy resolution B: BG rate

Requirement : Low BG, Large target mass, High E-resolution

2

Liquid Scintillator:

- (1) 10 wt.% Zr(iPrac)₄ loaded in anisole
- (2) 2.5% at 3.35MeV of energy resolution with 64% photo coverage and long attenuation length.

Pure water surrounding inner detector in order to veto muons and external backgrounds.

Inner detector with ~64% photo coverage 20" PMT including 1.7ton Zirconium loaded 113 tons LS in fiducial volume. (Total vol. : 180 tons)

行列要素の不定性を抑える

複数の原子核による観測で核

10m

0vββ事象の観測

目的

(1)

(2)

Zr(iPrac)₄を溶解させた液体シンチレータ

 $Zr(CH_{3}COCHCOOCH(CH_{3})_{2})_{4}$ = Zr(iPrac)_{4} mw : 663.87

Zr(iprac)₄ 2242mg, PPO 999mg and POPOP 10mg solved in 20mL Anisole

> 70g/L of Zirconium could be solved in anisole.

新学術領域「地下から解き明かす宇宙の歴史と物質の進化」領域研究会

2020年6月3日

<u>ZICOS検出器のコンセプトデザイン</u>

Phys.Rev.Lett. 117 (2016) 082503

⁹⁶Zr : 45kg (nat.) → 865kg(50% enrich)→1/20 BG $T_{1/2}^{0\nu} > 4 \times 10^{25}$ yrs → 2 × 10²⁶yrs → ~1 × 10²⁷yrs

 $0\nu\beta\beta$ event

Reconstructed vertex by scintillation light

β decay

2.6MeV γ

Reconstructed vertex by Cherenkov light Balloon or surface of detector

新学術領域「地下から解き明かす宇宙の歴史と物質の進化」領域研究会

位相幾何学的情報:平均角

Average angle with respect to averaged direction for single electron seems to have a peak at 48 degree which is almost same as Cherenkov angle.

<u>平均角を用いた背景事象の除去</u>

<u>PMT hit pattern of ²⁰⁸TI BG and</u> <u> $0v\beta\beta$ signal</u>

新学術領域「地下から解き明かす宇宙の歴史と物質の進化」領域研究会

Topological information from PMT position which received Cherenkov lights could be used for the reduction of 208TI BG event.

<u>今回使用した2インチ光電子増倍管とflash-ADC</u>

浜松ホトニクス H2431-50 (R2083)

CAEN V1751 digitizer

ゲイン: 2.5×10⁶
TTS: 0.37ns
上昇時間: 0.7ns

• 10 bit 2 GS/s (interleaved)

2019年3月16日

<u>シンチレーション光とチェレンコフ光の平均波形分布</u>

Measured by V1751 with DES mode (2GS/s) Decay time of scintillation: 4.57ns and 8.38ns **Rise time of scintillation** lights: 1.45ns **Rise time of Cherenkov** light : 0.75ns

It should be possible to discriminate using pulse shape for selection of PMTs whether including Cherenkov light or not.

新学術領域「地下から解き明かす宇宙の歴史と物質の進化」領域研究会

チェレンコフ光の特徴

- Refractive index of anisole : n=1.518
- Cherenkov angle is determined by $\cos\theta = 1/n\beta$
- Cherenkov threshold : β >0.659 corresponds to E_{kin} > 197keV.

Cherenkov light should be measured.
 (350nm – 550nm : 150-200 photon/MeV)

$$\frac{dN}{dx} = 2\pi z^2 \alpha \sin^2 \theta_{\rm c} \int_{\lambda_1}^{\lambda_2} \frac{d\lambda}{\lambda} = 475 z^2 \sin^2 \theta_{\rm c} {\rm photon/cm}$$

c.f. Light yield of Scintillation : ~12000photon/MeV

Cherenkov light = 1~2% of scintillation light

 $\frac{c}{n}$

θ

Bet

シンチレーション光とチェレンコフ光の波形分別

<u>今後の計画</u>

① 短期計画(2020~21)

- 波高分別法はほぼ開発済み
- エネルギー分解能の実測定(夏頃まで)
- 位相幾何学情報(平均角)の測定(本年度中)
- BG事象除去の実測(⁶⁰Coのβγ事象を利用)
 中期計画(2022~26)
 - 2"PMTプロトタイプ測定器(半径~35cm)
 - 6.5kg Zr(iPrac)₄ ~80gの⁹⁶Zr(自然存在比)
 - 既存の水タンク使用?
 - ⁹⁶Zr 2vββの観測 T^{2v}_{1/2}の測定(2.1x10¹⁹y)
 - ⁹⁶Zr 0vββの観測 T^{0v}_{1/2}下限値の更新
 - ⁹⁶Zrの濃縮→CANDLESの方法?

<u>今後の計画</u>

① 短期計画(2020~21)

- 波高分別法はほぼ開発済み
- エネルギー分解能の実測定(夏頃まで)
- 位相幾何学情報(平均角)の測定(本年度中)
- BG事象除去の実測(⁶⁰Coのβγ事象を利用)
 中期計画(2022~26)
 - 2"PMTプロトタイプ測定器(半径~35cm)
 - 6.5kg Zr(iPrac)₄ ~80gの⁹⁶Zr(自然存在比)
 - 既存の水タンク使用?
 - ⁹⁶Zr 2vββの観測 T^{2v}_{1/2}の測定(2.1x10¹⁹y)
 - ⁹⁶Zr 0vββの観測 T^{0v}_{1/2}下限値の更新
 - ⁹⁶Zrの濃縮→CANDLESの方法?

エネルギー分解能の実測定

新学術領域「地下から解き明かす宇宙の歴史と物質の進化」領域研究会

<u>今後の計画</u>

① 短期計画(2020~21)

- 波高分別法はほぼ開発済み
- エネルギー分解能の実測定(夏頃まで)
- 位相幾何学情報(平均角)の測定(本年度中)
- BG事象除去の実測(⁶⁰Coのβγ事象を利用)
 中期計画(2022~26)
 - 2"PMTプロトタイプ測定器(半径~35cm)
 - 6.5kg Zr(iPrac)₄ ~80gの⁹⁶Zr(自然存在比)
 - 既存の水タンク使用?
 - ⁹⁶Zr 2vββの観測 T^{2v}_{1/2}の測定(2.1x10¹⁹y)
 - ⁹⁶Zr 0vββの観測 T^{0v}_{1/2}下限値の更新
 - ⁹⁶Zrの濃縮→CANDLESの方法?

新学術領域「地下から解き明かす宇宙の歴史と物質の進化」領域研究会

17

<u>今後の計画</u>

① 短期計画(2020~21)

- 波高分別法はほぼ開発済み
- エネルギー分解能の実測定(夏頃まで)
- 位相幾何学情報(平均角)の測定(本年度中)
- BG事象除去の実証(⁶⁰Coのβγ事象を利用)
 中期計画(2022~26)
 - 2"PMTプロトタイプ測定器(半径~35cm)
 - 6.5kg Zr(iPrac)₄ ~80gの⁹⁶Zr(自然存在比)
 - 既存の水タンク使用?
 - ⁹⁶Zr 2vββの観測 T^{2v}_{1/2}の測定(2.1x10¹⁹y)
 - ⁹⁶Zr 0vββの観測 T^{0v}_{1/2}下限値の更新
 - ⁹⁶Zrの濃縮→CANDLESの方法?

BG事象除去の実測(本科研費で実施)

UNI-ZICOSによるβγ事象の平均角分布を測定

② 中期計画(2022~27)(基盤研究(A)?) <u>2"PMTプロトタイプ測定器(半径~25cm)</u> 6.5kg Zr(iPrac)₄ ~30gの⁹⁶Zr(自然存在比) ⁹⁶Zr $2\nu\beta\beta$ の観測 $T_{1/2}^{2\nu}$ の測定(2.1x10¹⁹y) ⁹⁶Zr $0\nu\beta\beta$ の観測 $T_{1/2}^{0\nu}$ 下限値の更新 既存の水タンク使用?(直径5mくらい) ⁹⁶Zrの濃縮→CANDLESの方法?

<u>まとめ</u>

⁹⁶Zrを用いた0νββ観測で10²⁷年以上の半減期を観測 には²⁰⁸Thのβγ背景事象の除去が必須 → チェレンコフ光の位相幾何学情報が有効 シンチレーション光を受光したPMTからチェレンコ フ光を受光したPMTを抜き出すための波形分別法 の開発にほぼ成功 ② 位相幾何学情報の実測(今年度実施) ③ βγ事象を用いた位相幾何学情報による除去の実 証(本科研費で来年度実施) 2022年にプロトタイプ測定器による⁹⁶Zrの2v $\beta\beta$ 観測 に向けてプロジェクトを開始 技術的課題(大型PMTの高速化と濃縮技術)の解決

21

おしまい

新学術領域「地下から解き明かす宇宙の歴史と物質の進化」領域研究会

2020年6月3日

シンチレーション光とチェレンコフ光の波形分別

χ²>1のQ(t)/Qtot分布

t=56~57nsecの時間では、 Q(t)/Qtot~0の事象が多 く含まれている。

シンチレーション光とチェレンコフ光の波形分別

<u>光量とエネルギー分解能の濃度依存性</u>

Measured at several conditions of PPO concentration

ङ्ख 35.0

.03MeV electron

Inergy resolution at

30.0

25.0

20.0

15.0

10.0

5.0

0

2.0

 $48.7 \pm 7.1\%$ light yield to standard cocktail was obtained at 10wt.% concentration.

6.0

8.0

concentration [wt.%]

PPO 0.5 wt.%

PPO 1.5 wt.%

PPO 4.8 wt.%

4.0

新学術領域「地下から解き明かす宇宙の歴史と物質の進化」領域研究会

25

10.0

208Thの崩壊図

The vertex position reconstructed by scintillation might be within fiducial volume due to gammas.

	y(i)
Radiations	(Bq-s) ⁻¹
beta- 5	2.27×10 ⁻⁰³
beta-8	3.09×10 ⁻⁰²
beta- 10	6.30×10 ⁻⁰³
beta-11	2.45×10 ⁻⁰¹
beta-12	2.18×10 ⁻⁰¹
beta- 13	4.87×10 ⁻⁰¹
ce-K, gamma 3	4.04×10 ⁻⁰³
gamma 4	6.31×10 ⁻⁰²
ce-K, gamma 4	2.84×10 ⁻⁰²
ce-L, gamma 4	4.87×10 ⁻⁰³
gamma 6	2.26×10 ⁻⁰¹
ce-K, gamma 6	1.97×10^{-02}
ce-L, gamma 6	3.32×10 ⁻⁰³
gamma 7	8.45×10 ⁻⁰¹
ce-K, gamma 7	1.28×10^{-02}
ce-L, gamma 7	3.51×10 ⁻⁰³
gamma 13	1.81×10^{-02}
gamma 15	1.24×10 ⁻⁰¹
ce-K, gamma 15	2.80×10 ⁻⁰³
gamma 19	3.97×10 ⁻⁰³
gamma 25	9.92×10 ⁻⁰¹

26

⁹⁰Sr/90Yのベータ事象による波形観測

Electrons from ⁹⁰Y decay could have an energy above Cherenkov threshold.

Possible to measure pulse shape using high statistics electrons for Cherenkov light.

新学術領域「地下から解き明かす宇宙の歴史と物質の進化」領域研究会

③ 0v事象探索(2027~) T_{1/2}>10²⁷年 m_v~3meV

- 検出器デザイン?
- どこで行う? (既存の水タンク? 直径10m)
- ⁹⁶Zr濃縮したZrCl₄の合成(精錬?)
- コラボレーション?
- - (不可能)
 - 20インチ 650本X60万円=4億円
 ③本体(外部タンクを除く)+エレキ <10億円
 ④12tonのZr(iPrac)₄の合成 数億円