

代表者: 南野彰宏(横国大) 分担者: 田中雅士(早稲田) 池田一得(ICRR) 竹田敦(ICRR) 岩田圭弘(東大) 伊藤主税(JAEA) 市村晃一(東北大)

新学術「地下宇宙」領域研究会・第6回極低放射能技術研究会 2020年6月3日 @ Zoom

- D01班の研究概要
- 高純度ゲルマニウム検出器によるスクリーニング
- 硫酸Gd水中のラドン除去と水中ラドン測定
- 環境中性子測定
- レーザー共鳴イオン化
- データベース
- ・まとめ

D01班の研究概要

D01班のミッション

- ・地下実験の共通バックグラウンドを、グループの垣根
 を超えて連携し、早期に測定・削減する。
- •そして、その技術を共通基盤化する。
- ・さらに、その成果を世界に発信する。

D01班関連の公募研究

「極低放射能測定におけるµ-TPCを用いたアルファ線イメージ分析装置の開発」:伊藤博士さん(東京大学)

• B02班研究からスピンオフ

•「落雷磁場を利用した神岡地下水分量の長期観測」: 鷲見 貴生 さん(国立天文台)

各プロジェクトの数値目標

- 高純度ゲルマニウム検出器によるスクリーニング
 - ・世界一の低BG: 連続成分がO(10) counts/day/kg(Ge重さ)
- •水中のラドン測定
 - 高感度(1週間): 0.1 mBq/m³
 - リアルタイム(1日): 0.5 mBq/m³
- 地下環境中性子測定
 - 液体シンチレーター検出器のα線BGを1/100以下に低減。
- レーザー共鳴イオン化
 - Xe中のKr 測定: O(10) ppqレベル

高純度ゲルマニウム検出器によるスクリーニング

詳細は6/4(木) 11:00~の市村さんのtalk

HPGeによるスクリーニング

ディスク法を用いた

感度の向上

- 硫酸ガドリニウムの直接測定: サンプルスペースを有効活用し、感度を~2倍に向上。
- 硫酸ガドリニウムの高感度測定: ラジウム濃縮ディスクを用いて、サンプル制作速度を3倍に向上。
- 予定:ディスク法の論文投稿と LabCのHPGeによるスクリーニングを継続(主に硫酸ガドリニウム)

新HPGe検出器導入

神岡LabCのGe検出器

- 2020年度末に新HPGe検出器を導入
- LabCのHPGeと同等性能(相対効率、分解能)
- BGレベルを改善
- 2021年度以降は、SK-Gd用硫酸ガドリニウムのス クリーニング速度が倍速(以上)に
- 新型コロナ収束後、設置場所のLabCで準備開始

膜脱気(Rn除去)モジュールの改良 6725 10725 モジュール

- モジュール内で膜を固定する接着剤と
 硫酸Gd溶液との相性:
 - ウレタン剤 : 溶出少ない
 - エポキシ剤 :溶出多い (接液部に使用されている)
- 硫酸Gd溶液中の長期試験で耐久性を調べる。
- 接液部にウレタン剤を使用する。
 - 6インチモジュールで作成済→今後評価
- 大型10インチモジュールの検討
 - 6インチモジュールの倍以上の流量に対応
 - トータルコスト削減の可能性
 - エポキシ剤のみ(上のエポキシとは異なる)
 - 10インチ用エポキシ剤の評価(Rn、溶出)

SKで使用中 (60モジュール)

濃縮ラドン測定セットアップの自動化

- •濃縮ラドン測定(液中ラドンの高感度測定)
 - 濃縮工程
 - 測定液体と純空気を効率よく接触させ、液中ラドンを 空気に取り込み、空気中ラドンを冷却活性炭に吸着。
 - 脱離工程
 - 冷却活性炭を加熱し、吸着させたラドンを高感度ラドン計に導入。
 - 再生工程
 - 測定前後で、活性炭等をベーキング。
- これら工程の切り替え全てを手で行っている。
 - 人手が必要
 - 月に一回程度の測定に限られる
- 自動化して作業を簡素化。
 - 週一回コンスタントに測定を行えるようにする。
 - 手順ミスをできるだけ減らす。

坑内LAB-E実験室の試験用セットアップ ラドン計

濃縮ラドン測定セットアップの自動化

制御盤で
 電磁弁や冷凍機を制御
 プログラムを作成中

- 2020年度:
 活性炭周りの数個の
 バルブを電磁弁に交換し
 工程の自動化を試験
 (LabEでの試験)
- 2021年度以降:
 SK-Gdの水ラインに 組み込み、測定開始

水中ラドンリアルタイム測定

水ラドン検出器(リアルタイム)の高感度化

C班(竹内)+D班(竹田)+中野、山本、岡本

- 既存の水ラドン検出器は、ガス用70Lラドン検出器[1]にDIC製中空糸膜モジュール[2]を取り付けたものであり、 極低BG地下実験で広く使用されている。
 - SKの返水/送水中のラドン濃度の常時モニター(運用中)
 - XMASS遮蔽水タンク中のラドン濃度の常時モニター(2012-2019)
 - XENONnT nVeto 中のラドン濃度の常時モニター(準備中, 2020-)
 - → ただし、SK送水中のラドン濃度を測定するための感度が不足している。
- この水ラドン検出器を低BG化・高感度化する(<1mBq/m³)のが本研究の目的。
 - ガス検出器部分をすでに開発済みの低BG80Lラドン検出器[3]に交換。
 - 膜モジュール位置の最適化で検出効率を向上させる。
- 現状と今後の計画

(現状)

- 検出器が完成、検出器BGの測定 (~5 counts/day (→~1.5 mBq/m³レベル))。主BG源の特定。
- SK水を既存の水ラドン検出器と同時測定して相対感度を測定中。

(今後の計画)以下を進めて検出感度 < 1 mBq/m³を達成する

- ラドン水を用いての検出効率の精密測定、膜モジュール位置の最適化による検出効率の最大化。
- 主BG源である膜モジュールの低BG化。

^[1] Y. Takeuchi et.al., NIMA 421 (1999), DOI:10.1016/S0168-9002(98)01204-2

^[2] C. Mitsuda et. al., NIMA 497 (2003), DOI:10.1016/S0168-9002(02)01923-X

^[3] K. Hosokawa et. Al., PTEP 033H01 (2015), DOI:10.1093/ptep/ptv018

水ラドン計の各部品からのBG測定

- 水中ラドン濃度測定に必要な全ての モジュールを取り付けた時(#5)の BG: 5.22±0.50 カウント/日。 (これまでの水ラドン計の検出効率 を仮定すると~1.5 mBq/m³相当)
 SUSシールドやICF ニップル(w/o EP)
- SUSシールトやICF _ ッノル(W/0 EP) ・フランジ類からのラドンは誤差内で 無視できる。
- 主BG源は、中空糸膜モジュール。 現在、ハウジングのSUS化等の改良が おこなわれている(竹内さん)。

#		Date	Rate				
	ICF nipple (w/o EP)	SUS シールド	膜モジュール	ICF flange (blank)	ICF flange (with pipe)		[counts/day]
1				0		3/02-3/16	0.80 ± 0.23
2	0			0		4/10-4/17	0.18 ± 1.06
3	0	0		0		4/17-4/29	1.04 ± 0.78
4	0	0	0	0		3/27-4/06	4.48 ± 0.88
5	0	0	0		0	5/08-5/27	5.22±0.50

← #1 は、上部のガス中
 80L検出器部分のみをICF203
 ブランクフランジで封止した
 状態。そこから水ラドン検出器
 に必要な部品を付けていって、
 #5が最終的なセットアップ。

環境中性子測定

中性子測定コンソーシアム

- •新学術「地下素核」の領域をまたいだ研究
 - ・2015年5月に立ち当げ後、若手を中心に活動。
 - ・中性子測定コンソーシアム → CHI SO KO → 地底
 - メンバー(31名): <u>http://bit.ly/30ifAuO</u>

液体シンチレーター検出器 による環境中性子測定

液体シンチレータによる地下環境中性子測定

<u>検出原理(粒子識別)</u>

- 中性子が原子核(主に水素)を反跳したときの
 エネルギーをシンチレーション光として検出
- Slow/Totalで粒子識別 中性子,α線 γ線

Fast + Slow = Total

検出器サイズ: ϕ 14cm×L30cm 液シン:BC-501A、PMT:両読み

<u>α線BGの理解と削減に取り組んでいる(初期純度では 0.2 mBqを達成)</u>

- 液液抽出による液シンの純化+検出器部材の低BG化
- ・詳細は6/4(木) 15:00からの小津さんの発表

³He比例計数管による 環境中性子測定

Neutron flux measurement @Hyper-K site Tochibora (-300mL) ^{竹田さん}

- Neutron flux measurements were performed by Chisoko (中性子測定コンソーシアム)
 - Setup A : そのまま
 - 2020/03/05-04/01
 - Setup B: 減速材+ボロンシート
 - 2020/02/05-03/05

He-3 proportional counter (Setup A)

LPC-320910 waveform digitizer (40 MHz) + PC Setup A @Tochibora

Results @HK site (Tochibora (-300mL))

新規導入の2台の³He比例計数管

- 詳細は6/2(火) 17:00-(パラレル)の佐々木さんの発表
- ・既存の1台 + 新規導入2台 = 計3台で多地点同時測定を行う。

熱中性子感度: 146 cps/nv 封入ガス気圧: 9.8 atm 長さ: 43.2 cm、直径: 5.1cm

レーザー共鳴イオン化

図は Y. Iwata, H. Sekiya, C. Ito, NIM A 797 (2015) 64-69 から

⁸⁵Kr

- 液体Xeによる暗黒物質探索のBG(Q値687keVのβ崩壊)
 - •工業的にXeガスを生成するときにKrがO(10~100) ppbレベルで混入
 - 85 Kr/Kr ~ 10^{-11} の同位体比で混入
 - XENONntでは蒸留でKr混入率をO(10) ppqレベルまで低減

Y. Iwata, H. Sekiya, C. Ito, NIM A 797 (2015) 64-69.

31

レーザー共鳴イオン化によるKr測定

• Arガス、Xeガス中のKrを0.4、0.8 pptまで測定成功

測定ガスをPulsed Supersonic Valve (PSV) でパルスで導入、
 212.6 nmのパルスレーザー(~10mJ/pulse, 幅~5ns, 10Hz)でイオン化、

Y. Iwata, H. Sekiya, C. Ito, NIM A 797 (2015) 64-69.

※1 Eur. Phys. J. C (2014) 74:2746

レーザー共鳴イオン化によるKr測定

- •利点:元素選択的イオン化によりBGが少ない
- 欠点: 検出効率が低い(効率~10^{-5~-6})ため測定感度がO(1) ppt
- •目標:「ガスクロ+MS測定」※1の感度(8 ppq)を超える
 - Kr濃縮の導入 + TOF-MFの排気をCold-fingerで回収

レーザー共鳴イオン化:2019年度実績と今後の予定

- 装置を大洗→東海移設完了 ⇒ 再開後、光学系構築&再現確認
- ① Kr測定: PSVのO-ring、ガス導入ラインのコンタミ低減を検討
 ② Gd³⁺発光: 発光スペクトル観測のセットアップ構築
 ③ Rn測定: 共鳴イオン化観測、除去手法の検討 → ^{詳細は} バックアップ

データベース

<u>http://133.11.143.254:5984/db_test/_design/persephone/index.html</u>:宇宙線研サーバー:神岡VPNへの接続が必要

<u>https://lowbgdb.lowbg.org/couchdb/couchdb/_design/persephone/index.html:ミラーサイト@東北大</u>

(アカデミックサーバーからで、現在はパスワードも必要:お問い合わせ下さい)

Coffee Break T						a lowlooth lo Persons	ntig arg			1	۵		header
			P	Per	Se	epl	hC terial A	one	15-0				
			Seanth Please J. Phys	Submit read through refer this de Conf. Sec.	Edit "Solo"-4 fabase (868, 012	Settings tag above be and original 2111 (2017)/	Info fore you i publication AJP Conf.	Environment se this databas s) when you us Proc. 1921, 840	Lo M. M. Some 2002 (2	pin num 008)	obers in this data	bane.	
			ALL	Group	XMASS Materi 1	KAMLAND. W: PHT, BO DELT: 7 7 Total results	MENIAGE 2. \$455. \$ = ALL 225	CANDLES 1	p.	×	Download all		
	Grouping	Name				,	notape	Amount	Inc	tape	Amount		
	+ CANDLES	Al Hyler Sa	mple A				Th-232	0.057 84/49					
	× KamLAND	1401 30um	(Toray Re	cycled Ny)						U	7e-11 g/g		
	+ KamLAND	14015 30ur	n (Toray U	innecycled N	60					U	6e-11 g/g		
	+ Kami,AND	Acrylic					Th	5e-11 g/g		U	8e-12 g/g		
	+ KaniJAND	Acrylic (Blac	ck)				Th	4.7e-11 g/g		U	4.1e-11 g/g		
	+ KamLAND	AD76P1								U	1e-11 g/g		
	+ Kami,AND	Aron Alpha	201 adhes	ives			Th	5e-12 g/g		U	5e-12 g/g		
	+ KamLAND	Aron Alpha	202 adhes	ilves			Th	5e-12 g/g		U	5e-12 g/g		
	+ KamUAND	Balloon glue					Th	2.3e-9 g/g		U	1.4e-9.9/9		
	+ KamiJAND	BHT					Th	5e-11 g/g		U	6e-12 g/g		
	× KansJAND	bis-958					Th	6e-11.9/9		U	4.8e-11 g/g		
	+ KamuAND	BisM58(Do)	(m)				Th	1e-10 g/g		U	2e-10-p/p		
	+ Kami,AND	Black Cable	guide				Th	94-9 5/5		U	44-9 5/9		
	+ Kami,AND	Cables (tell	ion()				Th	5e-9 - 3e-8 g/j		U	1e-9 g/g		
	+ KamLAND	Carbon fibe	e				Th	7e-12 g/g		U	2.46-9 (6/9		
	+ KamLAND	Carbon fibe	r				Th	5e-9 g/g		U	84-9 5/9		
	× KamiAND	Carbon fibe	r -				Th	44-9 5/9		U	1.9+8 9/9		

測定結果を世界に公開

新学術「地下素核」で開発された **Persephone**を利用:

宇宙線研サーバー: 427サンプル XMASS : 125 KamLAND : 207 NEWAGE : 10 CANDLES : 85

東北大サーバー: 226サンプル (お試しで置けるものを置いてある。) 東北大サーバーを2020年中にまず公開。 その後、データと機能を拡充する。

まとめ

- 高純度ゲルマニウム検出器によるスクリーニング
 - ・ 測定継続 + 新検出器を導入
- 硫酸Gd水中ラドン除去と水中ラドン測定
 - 運用に向けて準備中
- 環境中性子測定
 - •液体シン検出器の低BG化
 - 3台の³He比例計数管で地下観測
- レーザー共鳴イオン化
 - ・装置の移設が完了
- データベース
 - ・2020年度中に公開

Backup

Summary

Neutron fulx was measured at HK site (Tochibora, -300mL)

```
by Chisoko ("中性子測定コンソーシアム").
```

- 2020/02/05-04/01
- Results:
 - Setup A: (1.489 ± 0.025) × 10⁻³ cps
 - Setup B: (0.509 ± 0.014) × 10⁻³ cps
 - \rightarrow They are 15% higher than those at SK site (Lab-B).
 - → Ratio between Setup A/Setup B (2.93±0.09) is consistent with that in SK site. it means that distribution of energy may not so much different from that in SK site. But, more detailed investigation (distribution of U/Th in the rock of HK site) needs to be continued for precise energy spectrum of neutron.

Main components in neutron flux in SK site

Ref: K. Mizukoshi et. Al., PTEP 2018 123C01

- Left figure is energy spectrum of neutron (MC) in SK site (Lab-B).
- Main contributions are coming from (α, n) reaction from U/Th radio-active isotopes (RIs) and spontaneous fission from ²³⁸U in the rock.
- The contribution from muon is 0.020%.
- It is reason why neutron flux in HK site is not much larger than that in SK site.
- 15% higher flux may be explained by amount of U/Th RIs. It should be checked.

Measurement Results @Tochibora (-300mL)

Day

Measurement Results @Tochibora (-300mL)

(レーザー①)**Ar or Xe**中の**Kr**共鳴イオン 化

- PSVから、試料ガスをパルスでTOF質量分析計に導入
- 波長 212.6 nm パルスレーザー (~10 mJ/p, ~5 ns, 10 Hz) で Kr を (2γ+γ) 共鳴イオン化 ⇒ 検出限界

(レーザー②) 水中**Gd³⁺発光事象の解**明

- $Gd^{3+}: {}^{6}P_{7/2} \rightarrow {}^{8}S_{7/2}(312 \text{ nm})$ 寿命の文献値はあるが、発光
- Nd:YAG 第4高調波(266 nm, ~ns)励起による発光を分光器 ⇒PMT検出

(4倍波,波長266 nm)

スペクトルで未解明な現象あり

Table 2

Luminescence lifetimes (µs) of the Eu3+, Gd3+ and Tb3+ ions in aqueous solution as a function of the azide ion concentration

$[N_3^-]$ (mol 1 ⁻¹)	Eu ³⁺ (H ₂ O)	Eu ³⁺ (D ₂ O)	Gd ³⁺ (H ₂ O)	Tb ³⁺ (H ₂ O)	
0	112.4±0.7	4020.0±6.0	1480.0±20.0	442.0±2.0	
0.00001			1380.0 ± 14.2		
0.00005			1025.0±11.6		
0.0001		3880.0±5.0	850.0±11.2		
0.0002			548.0±9.3		
0.0004			215.0±3.2		
0.0006			170.0 ± 2.6		
0.0008			152.0 ± 2.1		
0.0010		911.0±3.6	136.0 ± 1.4		
0.05		191.3±0.9			
0.01	111.4 ± 0.6	95.4±0.7		441.0 ± 1.8	
0.02	94.1 ± 0.4	50.3 ± 0.6		435.4±1.8	
0.04	44.8 ± 0.4	31.5±0.3		416.7±1.4	
0.06	31.6±0.2	22.0 ± 0.2		367.7±1.5	
0.08	24.1 ± 0.2			313.8±1.1	
0.10	20.5 ± 0.1	16.0 ± 0.1		244.2±1.2	
0.15				139.7±1.4	
0.20	11.6 ± 0.1			92.0±0.0	
0.30				65.2±0.6	
0.40				50.0±0.6	
0.50	6.34±0.06			34.7±0.5	

Stefan Lis et al., Journal of Alloys and Compounds 323-324 (2001) 125-127.

(レーザー③)真空紫外(VUV)レーザー を用いたRn共鳴イオン化

TOF-MS

- Rn共鳴イオン化は、観測自体がchallenging
- ・ 共鳴四波混合による真空紫外(VUV)光生成
 ⇒ VUV + 355 nm(Nd:YAG 3倍波)でイオン化
- VUV~10 µJ/p 確認済

レーザー共鳴イオン化によるRn測定

- Rn測定
 - 共鳴4波混合により145.2 nmの真空紫外光レーザーを生成。
 - まずはRnの共鳴イオン化信号の初観測
 - •次に電場等で元素選択的Rn除去(Xeの干渉がない)
 - この真空紫外光レーザー生成技術はKr測定の感度改善にも応用化

レーザー共鳴イオン化によるGd³⁺発光測定

- SK-GdでのGd³⁺発光の寿命を測定
 - SK-Gd: 硫酸ガドリニウム濃度 0.02%(1期)~0.2%(2期)
 - Gd^{3+} : ${}^{6}P_{7/2} \rightarrow {}^{8}S_{7/2}$ (312 nm)
 - Nd:YAGレーザー 第4高調波(266 nm)で励起 → 分光器 → PMT検出

Table 2

$[N_3^-]$ (mol 1 ⁻¹)	Eu ³⁺ (H ₂ O)	Eu ³⁺ (D ₂ O)	Gd ³⁺ (H ₂ O)	Tb ³⁺ (H ₂ O)	
0	112.4±0.7	4020.0±6.0	1480.0±20.0	442.0±2.0	
0.00001			1380.0 ± 14.2		
0.00005			1025.0 ± 11.6		
0.0001		3880.0±5.0	850.0±11.2		
0.0002			548.0±9.3		
0.0004			215.0±3.2		
0.0006			170.0 ± 2.6		
0.0008			152.0 ± 2.1		
0.0010		911.0±3.6	136.0 ± 1.4		
0.05		191.3 ± 0.9			
0.01	111.4 ± 0.6	95.4±0.7		441.0 ± 1.8	
0.02	94.1 ± 0.4	50.3 ± 0.6		435.4±1.8	
0.04	44.8 ± 0.4	31.5±0.3		416.7±1.4	
0.06	31.6±0.2	22.0±0.2		367.7±1.5	
0.08	24.1 ± 0.2			313.8±1.1	
0.10	20.5 ± 0.1	16.0 ± 0.1		244.2±1.2	
0.15				139.7±1.4	
0.20	11.6 ± 0.1			92.0±0.0	
0.30				65.2±0.6	
0.40				50.0±0.6	
0.50	6.34 ± 0.06			34.7±0.5	

Stefan Lis et al., Journal of Alloys and Compounds **323-324** (2001) 125-127.

データベース:東北大サーバーの問題点とto do

①検索エンジンが未実装→神岡サーバーと同様の機能実装を目指す

②download allボタンを押すとexcelファイルが出る筈がエラーが出る(JAVA未実装)→表示項目DL機能を実装する
 ③chromeでログインを毎回聞かれる→推奨ブラウザはchrome以外(firefox, safari, opera etc.)

1.情報を充実(製造業者、測定時の写真 + エネルギースペクトルetc.):クリックだけで詳細情報出るように等も

2.上記の機能の実装

3.公開したくないけど残して置きたい情報の取り扱い:パスワードロックとかアカウントの権限とか、とりあえず上2つが終わったら

➡公開できる情報だけで、機能を拡充して2020年度中に運用開始を目指す(市村、伊藤博士さん、中野さん、玉江さんあたり or ポスドク)