

日時:2020年6月2日~6月4日 (<u>新学術「地下宇宙」領域研究会</u>と合同開催) オンラインで開催 (<u>Zoom</u>を利用) <u>新学術領域「地下から解き明かす宇宙の歴史と物質の進化」</u> 計画研究D01「極低放射能技術の最先端宇宙素粒子研究への応用」主催

極低放射能測定におけるµ-TPCを用いた アルファ線イメージ分析装置の開発

伊藤博士 (東大ICRR) 2020/06/03

1. はじめに

- いくら材料自身が綺麗なのにも関わらず、空気中に置いておくだけでラドン由来のPoが材料表面に付着し汚染される。
- Poは表面数ミクロンほど埋め込まれる。ウラン系列であるPb-210が半減期22年なので、その娘核のPo-210が
 5.3 MeVのα線を常に放射するようになる。
- Geなどの全量試験で、試料表面が汚染されていた場合、 過小評価する可能性がある。そのため、表面アルファ線 分析は独立的に重要な極低BG測定手法である。
- 表面汚染イメージが得られると構造体のどの部品に問題 かあるか明らかになる。

3. 今までの仕事に関して

April 2019 ~ Sep. 2019の間の出来事

- 2週間程度の安定運転を可能にした
- 銅メッシュを電解研磨で汚れを落とした
- 依頼されたサンプル測定を実施

<mark>Hyper-K</mark>におけるPMTガラス <mark>中性子コンソーシアム</mark>におけ サンプル3種類同時測定 るフランジ窓ガラス測定

SK-Gdのための硫酸Gd測定 のためのRa吸着ディスク

<mark>PICOLON実験</mark>におけ るテフロンシート

<mark>La-GPS シンチレータ 1cm³</mark>

<mark>Shefield Univ.</mark> 銅メッシュ付きプリント基板

-5

-10

2020/06/03

Cathode (cm)

性能を制限する課題

- ガス中のRn-アルファ線(6MeV)
- μ-PICを置くプリント基板からアルファ 線が壁際雑音となる。
- GODDな飛跡再構成の効率が低い

<u>改善案</u>

- 冷却活性炭の実装
- プリント基板由来のα線を防ぐ
- フィールドケージ再設計
- 有効面積の拡張
- 新型µ-PICの実装
- 目標感度 < 10⁻⁴ alpha/cm²/hr

<u>さらなる挑戦</u>

• 粉末サンプル測定手法の確立

6

改善案1:冷却活性炭の実装

- 神岡施設の活性炭と冷凍器をレンタルできた。
- 4月に配管実装は完了。-100度に冷却してガス循環 を確認している。
- 冷却活性炭を実装したことで、Rn-α線は1/3程度の 減少した。今回の活性炭は「ダイヤソープ」
- 活性炭を変えてみてRn-α線減少が一番良い素材を 決定する

<u>改善案2:プリント基板由来のアルファ線を防ぐと感度上がるかチェック</u>

改善案3:フィールドケージ再設計

- ・サンプル由来のα線(飛跡長~8cm)のためには、ドリフト長30cmは高すぎる。
- o RnによるBGはガス体積に依存する。
- o BGを半分減らすためにドリフト長15cm
 で電場ケージを再設計する。
- o Lab-Aのクリーン作業スペースが欲しい

改善案4: 有効面積の拡張

- o 今までPCB-α線 BGによって有効面積は制限されていた
- PCB-α線を除去し有効面積を拡張できれば感度改善できる。
- o ドリフトプレートのα線入射窓(穴)を広げる

<u>改善案6:新型µ-PICの実装</u>

- B02班で開発しているLow-BG μ-PICを実装する ことで、感度改善を図る
- ・ 従来のLow-α μ-PICは表面だけ綺麗だった。内部までU/Thの少ない素材に置き換える。
- o 本装置も使って新型μ-PICの素材選定を実施。

<u>改善案7:DAQ update</u>

- o 現在:飛跡再構成 Goodの検出効率20%
- o 軸に沿った飛跡再構成がボトルネック。 DAQ を改善し、射影したstrip情報、波形情報を組 み合わせてこの飛跡を復活させる。

o 目標2~3倍の検出効率を改善する

<u>さらなる挑戦</u>:粉末サンプル測定手法の確立

基本的にガス検出器は粉をそのまま入れられない。

- 真空引き・ガス循環で粉が舞う
- 粉をパックしたら袋の壁でα線が止まる。

今回、放射性不純物が少なく6μmの薄さで強度の あるシートが手に入った。 => これで粉を包めばエネルギーは損失するがα線 が検出できるはず。

 (1) まずどれほど綺麗かチェック OK
 (2) エネルギー損失をチェック:定量的にはまだ だが、1枚あたり1 MeVほど損失する。

以上から、粉末の表面α線分析できる目処がたった。Gd₂(SO4)₃のα線分析によって、CO1班のcross checkとして貢献できる。

(1) 測定の前に、このシートは綺麗かチェック

2020/06/03

スケジュール

目標感度: <10⁻⁴ α/cm²/hr (90%CL)

2019	2020		2021	
現状	前期	後期	前期	後期
〇 感度: A few x10 ⁻³ α/cm²/hr (σ) @3日データから1ヶ月測定の推定 NIM A 953 (2020) 163050.	E C ご ご ご ご ご ご ご い と た し で リント基板の で 端 からのBGを抑 の の で し ント基板の で	<u>マスク</u> 〕制 <u>張</u>	○ <u>新型µ-PIC開発/製</u> ↑ ○ <u>性能試験</u> ²²² Rn. ²²⁰ Rn工	造 B02と共同
○ <u>冷却活性炭の実装</u> 実測値による感度評価 OFF: 1.7 x10 ⁻³ α/cm ² /hr (90% ON: 6.1 x10 ⁻⁴ α/cm ² /hr (90%	ドリフトプレー 10x10 cm ² → 15x 感度はBG rateの → 4.1 x10 ⁻⁴ α	トの穴サイズ (15 cm ² (2.25倍) ルートで効くと仮定 /cm ² /hr (90%CL)	が期待される の <u>DAQ update</u> 飛跡再構成の 検出効率 20%	る
$\int_{0.7}^{10} He frigerator ON$ Refrigerator OFF $\int_{0.7}^{0.7} He frigerator OFF$ Unit: ×10 ⁻² α/cm ² /hr	○ <u>活性炭の選別</u> ラドンを1/3かり → 2.2 x10 ⁻⁴ α/cr	ら 1/10 まで抑制を仮定 n ² /hr (90%CL)	$\rightarrow 0.95 \times 10^{-4} \text{ c}$	x/cm²/hr (90%CL)
$\begin{array}{c} \textbf{v} \\ $	○ <u>フィールドケー</u> Radon alphaを半済 → 1.6 x10 ⁻⁴ α/cm ○ <u>新素材のス</u>	<u>ジ再設計</u> 咸 ² /hr (90%CL) <u>クリーンング</u> P02と共	○ <u>新型µ-Pl</u> → 0.5 x 新型µ-Pl 変わり予	<u>C実装</u> <10 ⁻⁴ α/cm ² /hr (90%CL) cの出来次第で価格も ら算的に確保できるか?
2020/06/03			1_1	11

表面アルファ線イメージ分析の立ち位置

2020/06/03

まとめ

- 表面α線イメージ分析は、全量試験では気づかない表面汚染に対して有効であり、独立的に重要な極低BG測定手法である。得られた画像から構造体のどの部品に問題かあるか明らかにできる。
- μ-TPCを用いた表面α線イメージ分析装置(AICHAM)は、low-a μ- PICを実装 したことで、感度~10⁻³ α/cm²/hrを達成した。
- 2週間の安定運転を可能にし、試料測定を継続していた。様々な実験グループから測定の注文があり、その度に試行錯誤で手法を確立していけました。
- 冷却活性炭の実装でBGのラドンは~1/3に減少し、感度は1ヶ月測定で 6×10⁻⁴ α/cm²/hrを達成した。
- 装置を全体的に改良するによって感度< 10⁻⁴ α/cm²/hrを目指す。

Backup