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Weakly Interacting Massive Particle
WIMP (Weakly Interacting Massive Particle)

• has short range interactions with the standard model particles
• energy density is explained by the freeze-out mechanism 
• correlation btw. various processes

DM

DM SM

SM

annihilation（thermal relic, indirect detection）

pair production（LHC)

scattering
（

direct detection, kinetic equilibrium
)
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Constraints from direct detection

• WIMP models have been severely constrained today
• We need ideas to avoid this strong constraint

101 102 103

WIMP mass [GeV/c2]

10°47

10°46

10°45

10°44

10°43

W
IM

P-
nu

cl
eo

n
s S

I
[c

m
2 ]

LUX (2017)
PandaX-II (2017)

XENON1T (1 t£yr, this work)

101 102 103

WIMP mass [GeV/c2]

10°1

100

101

N
or

m
al

iz
ed

[XENON1T (2018)]



Tomohiro Abe (IAR, KMI Nagoya U) 4

Small coupling 

• suppress the scattering cross section  (σSI  O(10-46) cm2)
• avoid the constraint from XENON1T experiment
• keep annihilation cross section  (  = 10-26 cm3/s) by resonance

≪

⟨σv⟩

DM

DM SM

SM

annihilation（Keep this for Ωh2）

scattering
（

suppress this to avoid Xenon1T)
(example)

hλhs
make this small
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DM temperature
• temperature of DM is assumed to be the same as the temperature of 

the thermal bath in WIMP models  ( )
• This assumption is valid if the scattering processes are frequent
• Now the scattering is suppressed to avoid the XENON1T
• We cannot assume 

• We have to calculate  by solving the Boltzmann equation

Tχ = T

Tχ = T
Tχ

DM

DM SM

SM

hλhs
small coupling
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withOUT assuming Tχ = T
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Boltzmann equation

these two higher-dimensional operators. This fermionic DM interacts with the SM particles only

through the exchange of the Higgs boson. The di↵erence between the two types of interactions is

important. For elastic scatterings of DM o↵ SM particles, the scattering amplitudes induced by

the CP-violating operator are suppressed by the momentum transfer in addition to the small DM-

Higgs coupling due to the Higgs resonance. The momentum transfer is very small because the DM

is non-relativistic in the scattering processes due to the Boltzmann suppression. Consequently, the

scattering is less e�cient if the CP-violating operator mainly induces the interaction. Therefore,

the e↵ect of the early kinetic decoupling is more important in the fermionic DM model with the

CP-violating coupling.

The rest of this paper is organized as follows. In Sec. 2, we briefly review the early kinetic

decoupling. The zeroth and second moments of the Boltzmann equation are discussed, which have

information on the number density and the temperature of DM, respectively. The coupled equations

to be solved are summarized. In Sec. 3, the fermionic DM model is described. The result with

the early kinetic decoupling is discussed in Sec. 4. We show the CP-violating interaction certainly

requires larger coupling compared to the one in the standard calculation to obtain the measured

value of the DM energy density. We vary the ratio of the CP-conserving and CP-violating couplings

and show that it a↵ects the kinetic decoupling. Using the values of the couplings required for the

right amount of the DM relic abundance, we discuss the Higgs invisible decay and prospects of its

measurements at collider experiments. We find that the branching ratio of the Higgs decaying into

two DM particles can be larger than the value predicted in the standard calculation. Section 5 is

devoted to our conclusion.

2 The early kinetic decoupling

We briefly review how to calculate the DM number density with taking into account the e↵ect

of the early kinetic decoupling based on the discussion in Ref. [7].

The Boltzmann equation for our universe is given by

E
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f�(t, ~p) = Cann.[f�] + Cel.[f�], (2.1)

where E is the energy of the DM, H is the Hubble parameter, ~p is the momentum of DM, and f� is

the phase-space density of DM. The collision term is divided into two parts. One is for annihilation

of pairs of DM particles (Cann.), and the other is for elastic scatterings of a DM particle o↵ a SM

3

n�(T�) = g�

Z
d3p

(2⇡)3
f�(~p, T�) = sY
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DM number density

particle in the thermal bath (Cel.). For two-to-two processes, they are written as
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where B and B
0 stand for particles in the thermal bath such as quarks, g� is the number of internal

degrees of freedom of DM, and f
eq
B is given by the Fermi-Dirac or Bose-Einstein distribution

depending on the spin of B. The summation should be taken for all the internal degrees of freedom

for all the particles. For the non-relativistic DM, Cel. is simplified as1 [20]
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where k
2
cm is given by

k
2
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m
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. (2.5)

Here Ek is the energy of B. Note that k2cm 6= E
2
k �m

2
B = |~k|

2.

The temperature of the DM, T�, and a related variable y are defined by

T� =
g�

3n�

Z
d
3
p

(2⇡)3
~p
2

E
f�(~p) =

s
2/3

m�
y, (2.6)

where n� is the number density of the DM, and s is the entropy density. Here s is a function of

the temperature of the thermal bath, T . From this definition, T� and y are the function of T . The

yield and x are defined as usual,

Y =
n�

s
, x =

m�

T
. (2.7)

1 Eq. (2.4) is the same as Eq. (5) in [7]. The expression here makes it clear that Cel. does not contribute to the
zeroth moment of the Boltzmann equation.

4

DM temperature

dn�

dt
=(complicated equations),

dT�

dt
=(complicated equations).
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Fermion dark matter model
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•  : dark matter (Majorana fermion, gauge singlet)
• H : Higgs boson

χ

Two types of interactions
• scalar-type               : 
• pseudo scalar-type  : 

χ̄χH†H
χ̄iγ5χH†H

During the QCD phase transition, we cannot treat particles as free particles. Dedicated studies

are required for that regime. In Ref. [21], the table is provided for g⇤ and gs for 0.036 MeV

. T . 8.6 TeV. Since the values of g⇤ and gs do not change for T . 0.036 MeV, we can regard the

values of g⇤ and gs at T = 0.036 MeV as the values at the temperature today.

We solve Eqs. (2.8) and (2.9) numerically with the following initial condition

Y (xini.) =Yeq(xini.), (2.17)

y(xini.) =yeq(xini.), (2.18)

where xini. ' 10. After solving the coupled equations and obtain Y (x0), where x0 is defined by the

temperature of the current universe T0 as x0 = m�/T0, we convert Y (x0) into ⌦h2 that is given by

⌦h2 =
m�s0Y (x0)

⇢cr.h
�2

, (2.19)

where [22]

s0 =
2⇡2

45
gs(x0)T

3
0 , (2.20)

⇢cr.h
�2 =1.05371⇥ 10�5 [GeV cm�3], (2.21)

T0 =2.35⇥ 10�13 [GeV]. (2.22)

The measured value of ⌦h2 by the Planck Collaboration is ⌦h2 = 0.120± 0.001 [23]. We can use

this value to determine a model parameter.

3 Model

We describe a model that we investigate in the following. We consider a gauge singlet Majorana

fermion DM. A discrete symmetry Z2 is assumed to stabilize the DM particle. Under the Z2

symmetry, the DM is odd while all the other particles, namely the SM particles, are even. Then,

renormalizable operators composed of the DM and SM fields are forbidden. The DM particle

interacts with the SM particles through higher-dimensional operators. Therefore, the model is

regarded as an e↵ective theory of fermionic DM models. Up to dimension-five operators, the

Lagrangian is given by

L =LSM +
1

2
�̄ (i�µ@µ �m�)�+

cs

2
�̄�

✓
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†
H �

v
2

2

◆
+

cp

2
�̄i�5�

✓
H

†
H �

v
2

2

◆
, (3.1)

where � is the DM candidate, H is the SM Higgs field, and v is the vacuum expectation value

of the Higgs field, v ' 246 GeV. The three parameters (m�, cs, and cp) are real. There are two

6
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Scattering process
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q

• suppressed by 
• For non-relativistic DM,  is typically small
• elastic scattering is more suppressed by pseudo-

scalar coupling 

q
q

Two types of interactions
• scalar-type               : 
• pseudo scalar-type  : 

χ̄χH†H
χ̄iγ5χH†H

During the QCD phase transition, we cannot treat particles as free particles. Dedicated studies

are required for that regime. In Ref. [21], the table is provided for g⇤ and gs for 0.036 MeV

. T . 8.6 TeV. Since the values of g⇤ and gs do not change for T . 0.036 MeV, we can regard the

values of g⇤ and gs at T = 0.036 MeV as the values at the temperature today.

We solve Eqs. (2.8) and (2.9) numerically with the following initial condition

Y (xini.) =Yeq(xini.), (2.17)

y(xini.) =yeq(xini.), (2.18)

where xini. ' 10. After solving the coupled equations and obtain Y (x0), where x0 is defined by the

temperature of the current universe T0 as x0 = m�/T0, we convert Y (x0) into ⌦h2 that is given by

⌦h2 =
m�s0Y (x0)

⇢cr.h
�2

, (2.19)

where [22]

s0 =
2⇡2

45
gs(x0)T

3
0 , (2.20)

⇢cr.h
�2 =1.05371⇥ 10�5 [GeV cm�3], (2.21)

T0 =2.35⇥ 10�13 [GeV]. (2.22)

The measured value of ⌦h2 by the Planck Collaboration is ⌦h2 = 0.120± 0.001 [23]. We can use

this value to determine a model parameter.

3 Model

We describe a model that we investigate in the following. We consider a gauge singlet Majorana

fermion DM. A discrete symmetry Z2 is assumed to stabilize the DM particle. Under the Z2

symmetry, the DM is odd while all the other particles, namely the SM particles, are even. Then,

renormalizable operators composed of the DM and SM fields are forbidden. The DM particle

interacts with the SM particles through higher-dimensional operators. Therefore, the model is

regarded as an e↵ective theory of fermionic DM models. Up to dimension-five operators, the

Lagrangian is given by

L =LSM +
1

2
�̄ (i�µ@µ �m�)�+

cs

2
�̄�

✓
H

†
H �

v
2

2

◆
+

cp

2
�̄i�5�

✓
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◆
, (3.1)

where � is the DM candidate, H is the SM Higgs field, and v is the vacuum expectation value

of the Higgs field, v ' 246 GeV. The three parameters (m�, cs, and cp) are real. There are two

6
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Result : only pseudo-scalar case
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Figure 1: Left: The values of cp that explain the measured value of the DM energy density in the maximally

CP-violating case. The black-solid curve is for the standard calculation without taking into account the e↵ect

of the early kinetic decoupling. The blue-dashed and blue-dotted curves are the results with the e↵ect of

the early kinetic decoupling in the QCD-A and QCD-B scenario, respectively. The constraint and prospects

from the Higgs invisible decay search are also shown. The gray shaded region is already excluded by the

ATLAS and CMS experiments. The black dashed curves show the prospects of the HL-LHC, ILC, and FCC

experiments. Right: The branching ratio of the Higgs invisible decay for cs = 0. The color notations are

the same as in the left panel.

at 95% CL. The prospects of various experiments are summarized in [29],

BRinv <

8
>>>>><

>>>>>:

0.019 (HL-LHC)

0.0026 (ILC(250))

0.00024 (FCC)

(4.2)

at 95% CL, where FCC corresponds to the combined performance of FCC-ee240, FCC-ee365, FCC-

eh, and FCC-hh. The prospects for the ILC, and FCC are obtained by combining with the HL-LHC.

We show the model prediction of the branching ratio of the Higgs invisible decay in the right panel

in Fig. 1 with these prospects and the current bound. Due to the large enhancement of cp by

the early kinetic decoupling, the bound on the mass of the DM is stringent. The current lower

mass bound on the DM is obtained as 58.1 GeV in QCD-B, while it is 55.2 GeV in the standard

treatment where the e↵ect of the kinetic decoupling is ignored. The constraint and prospects are

also shown in the left panel in Fig. 1.

10

BRinv <

(
0.13 (ATLAS)

0.19 (CMS)

<latexit sha1_base64="N2OT8egBRxvJeLVUaqQ3Q9nEQgQ="></latexit>

BRinv <

8
>>>>>>>><

>>>>>>>>:

0.019 (HL-LHC)

0.0026 (ILC(250))

0.0023 ILC500

0.0022 ILC1000

0.0027 (CEPC)

0.00024 (FCC)

<latexit sha1_base64="1aeWDhnDs8FoOpMRJDEv4N9u9b8="></latexit>
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Summary
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WIMP models are constrained by direct detection experiments  
• small coupling with the Higgs resonance is a possible way to avoid the 

constraints

  is not a good assumption 
• though it is assumed in standard calculations
•  should be calculated from the Boltzmann equation 

Larger coupling is required 
• to explain the energy density of DM by the freeze-out mechanism
• the coupling enhancement is really large in a fermionic DM model
• more chance to see DM signals at experiments

Tχ = T

Tχ
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Freeze-out mechanism
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dn

dt
+ 3Hn = �h�vi

�
n
2 � n

2
eq

�
scale factor

a3

na3

H =
1

a

da

dt

a

volume：

Hubble const.
particle number

DM

DM SM

SM

annihilation  
stop if the expansion ratio is larger than the 

annihilation rate

creation 
stop if temperature of the universe decrees and 
creation process is kinematically forbidden

Eur. Phys. J. C   (2018) 78:203 Page 3 of 57  203 

being the entropy density (heff(T ) is the effective number of
entropy degrees of freedom at the temperature T ), so that it
is possible to get rid of the term dependent on the Hubble
expansion rate on the left-hand side of Eq. (1), giving:

dYχ

dt
= ds

dt
〈σv〉
3H

Y 2
χ

(

1 −
Y 2

χ ,eq

Y 2
χ

)

. (7)

To obtain the last equation we have used the entropy
conservation relation ds

dt = −3Hs. Qualitatively, Eq. (7),
describes the following picture: If DM interactions are
enough efficient, as in the case of WIMPs, at early times
the annihilation rate Γann = 〈σv〉Yχ s exceeds the Hubble
expansion rate and Eq. (7) is solved for Yχ = Yχ ,eq , mean-
ing that the DM is in thermal equilibrium with the primordial
thermal bath. At later times, when the temperature eventu-
ally drops below the DM mass, the DM yield becomes Boltz-
mann suppressed, Yχ ,eq ∝ exp(−mχ/T ), so that the annihi-
lation rate falls below the Hubble expansion rate leading to
the thermal freeze-out of this “cold” relic, i.e., thereafter Yχ

is approximately constant with time.1 Equation (7) can be
solved by adopting the temperature T 2 of the thermal bath
or x = mχ/T as independent variable. A good approxi-
mate solution is represented by the following semi-analytical
expression [23]:

Y (T0) ≡ Y0 &
√

π

45
MPl

[∫ T f

T0

g1/2
∗ 〈σv〉dT

]−1

, (9)

where:

g1/2
∗ = heff

g1/2
eff

(
1 + 1

3
T
heff

dheff

dT

)
, (10)

with T0 as the present time temperature while T f represents
the freeze-out temperature which can be determined by solv-
ing the equation:

√
π

45
MPl

g1/2
∗ mχ

x2 〈σv〉Yχ ,eqδ(δ + 2) = −d log Yχ ,eq

dx
, (11)

where δ = (Yχ − Yχ ,eq)/Yχ ,eq is conventionally set to 1.5
while x = mχ/T .

The DM relic abundance is usually expressed in terms of
the parameter ΩDMh2 where h ∼ 0.7 is the value Hubble
expansion rate at present times in units of 100 (km/s)/Mpc

1 See Ref. [22] for an exception (“relentless” DM) for modified expan-
sion histories.
2 We make also use of: ds

dt =
[

3s
T

(
1 + T

3heff

dheff
dT

)]
dT
dt . (8)

Fig. 2 Comoving number density evolution as a function of the ratio
mχ/T in the context of the thermal freeze-out. Notice that the size
of the annihilation cross-section determines the DM abundance since
ΩDMh2 ∝ 1/〈σv〉

while ΩDM represents the ratio between the DM energy den-
sity ρDM and the so called critical energy density ρcr , namely:

ΩDM = ρDM/ρcr(T0), ρDM = mχ s0Y0,

ρcr(T ) = 3H(T )2M2
PL/8π, ρcr(T0) & 10−5 GeV cm−3,

(12)

where s0 = s(T0) is the entropy density at present times.
By combining the expressions above, the DM relic density

can be numerically estimated as:

ΩDMh2 ≈ 8.76 × 10−11 GeV−2
[∫ T f

T0

g1/2
∗ 〈σv〉dT

mχ

]−1

.

(13)

The behavior of the solution of the Boltzmann equation
is illustrated in Fig. 2. As expected, the DM relic density is
basically set by the inverse value of the thermally averaged
cross-section (calculated at the freeze-out temperature), with
a logarithmic dependence on mχ . It can be straightforwardly
verified that the experimental determination of ΩDMh2 ≈
0.12 [1] is matched by a value of the cross-section of the order
of 10−9 GeV−2 corresponding to 〈σv〉 ∼ 10−26 cm3 s−1.

The WIMP paradigm hence reduces, under the hypothe-
sis of standard cosmological evolution of the Universe, the
solution of the DM problem to the determination of a sin-
gle particle physics input, i.e., the thermally averaged pair
annihilation cross-section of the DM.

Its formal definition reads [23]:3

3 In scenarios where the DM is not the only new particle state, other
processes like co-annihilations, might also be relevant for the DM relic
density. A more general definition of 〈σv〉, including such processes,
can be found e.g., in Ref. [24].

123

[Arcadi+ (1703.07364)]

thermal average of the 
annihilation cross section
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This constraint is very strong
(e.g.) SM + singlet scalar

• introduce a gauge singlet scalar “S” that is Z2 odd

• two free parameters: DM mass and λsH

• determine λsH to obtain measured value of the DM energy density
• then we can predict σSI uniquely

L = LSM +
1

2
@
µ
S@µS � m

2

2
S
2 � �sH

2
S
2
H

†
H � �s

4!
S
4

<latexit sha1_base64="1qa/4esHeJJbEVqo9hEO9lZCI2Q="></latexit>

[Silveria et.al. (‘85), McDonald (’94), Burgess (’01),  …,
Cline et.al. (’13), TA Kitano Sato (’15), …
GAMBIT collaboration (’17, ‘19) ]
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How strong is the Xenon1T constraint?
singlet scalar DM vs direct detection

• mDM > 1TeV  is allowed
• mDM ~ mh/2  is also allowed (Higgs funnel/resonance)
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Early kinetic decoupling
Calculation in the Higgs funnel region required dedicated study 

• coupling is very small
• kinetic decoupling happens before chemical decoupling
•   (  is assumed in standard treatment)
• coupling should be larger ==> stronger constraint from Xenon1T

Tχ ≠ T Tχ = T

[Duch, Grzadkowski (’17);
Binder, Bringmann, Gustafsson, Hryczuk (’17)]

7

FIG. 1. The required value of the Singlet-Higgs coupling �S ,
as a function of the Scalar Singlet mass mS , in order to obtain
a relic density of ⌦h2 = 0.1188. The blue dashed line shows
the standard result as established by Gondolo & Gelmini [9],
based on the assumption of local thermal equilibrium during
freeze-out. For comparison, we also plot the result of solving
instead the coupled system of Boltzmann equations (27) and
(28) for the maximal (‘B’) and minimal (‘A’) quark scatter-
ing scenarios defined in the main text (red solid and dashed
lines, respectively). Finally, we show the result of fully solving
the Boltzmann equation numerically, for the maximal quark
scattering scenario and with no DM self-interactions included
(‘full BE’).

B: only light quarks (u, d, s) contribute to the scat-
tering, and only for temperatures above 4Tc ⇠

600MeV, below which hadronization e↵ects start to
become sizeable [63] (smallest scattering scenario,
as adopted in [12]).

Finally, we adopt the recent results from Drees et
al. [64] for the e↵ective number of relativistic de-
grees of freedom ge↵(T ) that enter the calculation of
the Hubble rate during radiation domination, H =p

4⇡3ge↵/45T 2
/mPl, as well as the entropy degrees of

freedom entering for example in the calculation of g̃(T )
as defined in Eq. (18).

B. Relic density of scalar singlet dark matter

Let us first compute the relic density following the
standard treatment adopted in the literature. To this
end, we numerically solve Eq. (17) for a given set of pa-
rameters (mS ,�S) and determine the resulting asymp-
totic value of Y0. The blue dashed line in Fig. 1 shows
the contour in this plane that results in Y0 correspond-
ing to a relic density of ⌦h2 = 0.1188, c.f. Eq. (19). We
restrict our discussion to values of mS in the kinematic
range where h�vi is enhanced due to the Higgs propaga-
tor given in Eq. (41), and the coupling �S that results
in the correct relic density is hence correspondingly de-

FIG. 2. Temperatures at which DM number density and ve-
locity dispersion (‘temperature’) start to deviate from their
equlibrium values, defined for the purpose of this figure as
|Y �Yeq| = 0.1Yeq and |y�yeq| = 0.1 yeq, respectively. These
curves are based on solving the coupled system of Boltzmann
equations (27) and (28), for the same parameter combinations
as in Fig. 1 (resulting thus in the correct relic density).

creased. This curve agrees with the corresponding result
obtained in Ref. [49].

For comparison, we show in the same figure the re-
quired value of �S that results when instead solving the
coupled system of Boltzmann equations (27) and (28), or
when numerically solving the full Boltzmann equation as
described in Section IIC . Here, the solid (dashed) line
shows the situation for the ‘B’ (‘A’) scenario for scat-
terings on quarks. Outside the resonance region, the
coupled Boltzmann equations lead to identical results
compared to the standard approach, indicating that ki-
netic decoupling indeed happens much later than chemi-
cal decoupling and that the assumption of local thermal
equilibrium during chemical freeze-out thus is satisfied.
For DM masses inside the resonance region, on the other
hand, we can see that the two methods can give signif-
icantly di↵erent results, implying that this assumption
must be violated. For the same reason, a smaller scat-
tering rate (as in scenario ‘B’) leads to an even larger
deviation from the standard scenario than the maximal
scattering rate adopted in scenario ‘A’.

This interpretation is explicitly confirmed in Fig. 2,
where we plot the temperatures at which the DM num-
ber density and temperature start to deviate from the
equilibrium values: in the parameter range that we focus
on here, kinetic decoupling happens indeed very close
to chemical decoupling. The reason for this very early
kinetic decoupling is straight-forward to understand as
the result of a strongly suppressed momentum transfer
rate �(T ), compared to the annihilation rate, due to
two independent e↵ects: i) the small coupling �S needed
to satisfy the relic density requirement, without a cor-
responding resonant enhancement of �(T ), and ii) the
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Note that x is defined by T not T�. Di↵erential equations for Y and y are obtained from the zeroth

and second moments of the Boltzmann equation, namely g�
R d3p
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Eq. (2.1). Note that the elastic scattering term given in Eq. (2.4) does not contribute to the zeroth

moment term. This is a natural consequence because the elastic scattering processes do not change

the number density of DM. After some algebra, the following coupled equations are obtained.
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Here g and gs are the e↵ective degrees of freedom for the energy and entropy densities respectively,

f
eq
� is given by the Boltzmann distribution, and mpl is the reduced Plank mass, mpl = 1.220910⇥

1019(8⇡)�1/2 GeV. For h�viT and h�vi2,T , replace T� by T in h�viT�
and h�vi2,T�

, respectively.
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From the first to the second line in Eq. (2.11), we used the following relation,

f
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eq
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f
eq
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and integration by parts.
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elastic scattering
B: particles in the thermal bath
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Figure 3: The values of the couplings that explain the measured value of the DM energy density. The

blue-hatched region (\\\) is excluded by the XENON1T experiment [4]. The red-dashed line shows the

prospect of the XENONnT and LZ experiments [32, 33]. The orange-hatched region (///) is below the

neutrino floor and cannot be accessed by the direct detection experiments. The other color notation is the

same as in Fig. 1.

the Higgs invisible decay is essential to test the model.
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