ANKOK実験: 低質量暗黒物質直接探索のための 低エネルギー電子反跳背景事象の理解

早稻田大学 木村眞人

地下から解き明かす宇宙の歴史と物質の進化

Unraveling the History of the Universe and Matter Evolution with Underground Physics

'20/06/02 | UGAP2020 (Online Parallel Session)

Liq.-Ar Scintillation Detectors

Attractive detector for WIMP search, ν -physics, ... Efficient conversion of energy deposition into scintillation (S1) and ionization (S2) signals. Powerful pulse shape discrimination (PSD) of nuclear recoils (NR) from electronic recoils (ER).

系統的な理解が検出器デザインやデータの解釈に不可欠

低質量WIMP探索におけるER背景事象

- : Energy Region of Interest $\leq 10 \text{ keV}_{nr} \sim 40 \text{ keV}_{ee}$
- : ER Background Source : ³⁹Ar, ³⁷Ar, ⁸⁵Kr, etc.
 - → PSDを用いた解析的な除去 and/or Backgroundスペクトラムを予測した差し引き
- : 液体アルゴン発光量は,
 - NR, ERともにエネルギーに依存すると予想
 - NR:複数の測定結果(エネルギーに対して単調減少)
 - ER:40 keVee以下の測定はない
 - (c.f. キセノン検出器におけるエネルギー依存性の報告)
 - 低エネルギー閾値化の実現には,
 - 信号領域における検出器応答の系統的理解が欠かせない
- 本研究:keV MeV領域のER光量測定@ゼロ電場

Setup : S1大光量検出に特化した検出器

- Single phase (Null-Field),
 - Active region = $\phi 6.4 \text{ cm} \times L5 \text{ cm}$ (LAr = 225 g)
 - 3-inch PMT (R11065) ×2,
 - 窓面に波長変換剤 (TPB) を真空蒸着
 - 内壁は反射材 (ESR) にTPBを蒸着
- : Active shielding (LAr)
 - Total ~ 140 kg

•

- 2 inch PMT x4を有感領域直上に配置
- Passive shielding
 - 鉛 (10 cm) + 無酸素銅 (2 cm)
- \rightarrow Event Rate ≤ 1 Hz @ Single-Photon Coincidence

- : ¹³⁷Cs (662 keV) 全吸収ピークを用いて測定³
- : 検出光量
- 主な不定性は PMT (R11065) に起因
 "Under-Amplified"成分の 存在示唆 (→ ゲイン関数は Guas. ⊕ Exp.)⁰
 Afterpulseの存在 (主にPMT真空内の不純物起因)

Calibration S >300 keVの r 線源は チェンバー外から照射。 200 keVの較正には、 右感領域付近で生成可能た				
ソースを利用。 10^{-3} 10^{-4} 10^{-3} 10^{-2}				
Energy [keV]	RI	Pos.	Photon Energ	
1274.6	²² Na			
661.7	¹³⁷ Cs	チェンバー外		
511.0	²² Na		Back-to	
356.0	¹³³ Ba			
197.1	¹⁹ F (n , γ)	内部で生成	252Cfを	
109.8	¹⁹ F (n , γ)		252Cfを	
59.54	²⁴¹ Am	チェンバー内	α-tag	
2.82	³⁷ Ar	Fiducial内	LAr内·	

•

.

•

極低エネルギー較 : Argon-37 : 大気アルゴン中に存在する³⁷Ar由来の2 - Cosmogenic, 地上実験時には不可避 : 大気アルゴン中の³⁷Arを用いるため, Passive shield + LAr Active shield L 環境放射線を遮蔽 : 2-PMT Coincidence Trigger (~1 p.e. 閩 0.23 kg x 27 hourのデータ取得により 2.8 keV事象をシンチレーション光で初

Gaus. Fitting $\mu = 28.9 + -0.6$ p.e., $\sigma = 19.3\%$ (~ 1/ \sqrt{N}), Rate ~ 30 mBq/kg

		37Ar
	半減期	35.0 day
		⁴⁰ Ar(n, 4n) ³⁷ Ar,
	生成	$^{36}{\rm Ar}({\rm n}, \gamma)^{37}{\rm Ar},$
		40 Ca(n, α) 37 Ar
		Electron Capture (100%)
2.8 keV線を活用	崩壞	2.8 keV (K-shell),
		0.27 keV (L-shell)
匠 は自京事家	存在量	~1.3×10 ⁻²⁰ (~45 mBq/kg)
		[2] PRC 100 024608 (20
		· · · · · · · · · · · · · · · · · · ·
		χ^2 / ndf 82.21 / 84
		μ 28.93 + 0.58
園値), 🖞 🛚 🗄 🗏		$0/\mu 0.1931 \pm 0.0229$
, , ,		-
J観測 ^{- 40}		

80

100

60

Detected Light (p.e.)

20 -

()

20

40

: 2.8 keV - 1275 keVの電子反跳に 対する検出光量とエネルギー分解能 (^{Ayyed}) - エネルギーに依存した検出光量 (→ 詳細は次頁)

- エネルギー分解能:
$$\frac{\sigma}{E} = \sqrt{\frac{0.37^2}{E \, [\text{keV}]} + 0.021^2}$$

Stochastic項は 光子数統計 (Poisson過程) と PMTのゲイン分散が主な寄与

arXiv:2003.14248

発光効率のエネルギー依存性

液体キセノンと同様に, 電離電子-イオン再結合過程に起因すると解釈できる 電離密度が反跳電子の軌跡長とそのdE/dxに依存 <200 keVの領域をTIB Modelにより説明 検出器内での散乱回数(反跳電子数)を 考慮してデータをフィット (全吸収エネルギーではなく)

反跳電子のエネルギーによって決まる値

= 検出器に不変な量を決定

TIB Model $n_{ph} = \frac{E}{W}(N_{ex} + RN_i), \quad R = 1 - \frac{\ln(1 + N_i\varsigma)}{N_i\varsigma}$

 $[N_{ex}: 生成励起子数, N_i: 生成電離数, \varsigma: Free Parameter]$

題めと展望

Backup

