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重⼒崩壊型超新星
⼤質量星の⼤爆発

(Copyright by AAO, photographs by D. Malin) 

爆発メカニズム
ニュートリノ加熱メカニズム

⼤質量星 重⼒崩壊 衝撃波発⽣ ニュートリノが物質にエネルギーや運動量を与える



輻射輸送計算の近似法

本研究は、光学的に厚くも薄くもない領域におけるニュートリノ輻射輸送過程の解析を通して、
爆発メカニズムの解明を進めるとともに、近似法の検証、近似法の適⽤範囲の把握、
近似法の改良などを⽬指し、第⼀原理計算を⾏う。
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エントロピーの等値⾯と速度ベクトル
流体の物理量

2D 3D1D
衝撃波発⽣直後に原始中性⼦星内部で発⽣する対流の成⻑とそれがする減衰までを計算（~20ms）

対流なし 環状の対流 セル状の対流



電⼦ニュートリノの数密度とフラックスファクターベクトル

2D 3D

ニュートリノの物理量

1D
中⼼部では流体と同じ速度でニュートリノが移動し、外側でニュートリノが物質から離れて真っ直ぐに⾶んでいく



1D 2D 3D
運動量空間における電⼦ニュートリノ分布 t = 10s, r=30km

Pz軸対称 Pz-Px⾯対称 対称性なし

低エネルギー 光学的薄

⾼エネルギー 光学的厚

r⽅向



ニュートリノ輻射輸送の近似法との⽐較
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6.3. Grey zone
For a solution of the radiation fields in the optically grey zone, in general, it is

necessary to fully solve the radiation transfer equation in general relativity. However,
it is not possible in the framework of truncated moment formalism and far beyond
the scope of this paper. We propose an approximate method which is essentially the
same as the variable Eddington factor method.14) In this prescription, P ij

(ν) is given
by

P ij
(ν) =

3χ − 1
2

(P ij
(ν))thin +

3(1 − χ)
2

(P ij
(ν))thick, (6.21)

where χ is the so-called variable Eddington factor, which is χ = 1/3 in the optically
thick limit and χ = 1 in the optically thin limit. Following Ref. 14), we choose that
χ is a function of F̄ , for which in general relativity, the candidates are

F̄ :=
(γijF i

(ν)F
j

(ν)

E2
(ν)

)1/2

, (6.22)

and

F̄ :=
(hαβH α

(ν)H
β

(ν)

J2
(ν)

)1/2

. (6.23)

For the optically thick and thin limits, F̄ = 0 and F̄ = 1, respectively. For giving a
correct value of F̄ in the optically thick limit, Eq. (6.23) should be chosen because
H α

(ν) should be zero in the comoving frame; if the fluid has a large uniform velocity,
the value of F̄ in Eq. (6.22) would be highly different from zero even in an optically
thick medium. For giving a correct value of F̄ in the optically thin limit, both
Eqs. (6.22) and (6.23) can be chosen, because in such a limit, M αβ

(ν) is proportional
to J(ν)p

αpβ (pα is a null vector) and F̄ = 1 for the null fluid in both definitions (see
§3). For this reason, we choose Eq. (6.23) for F̄ .

With the choice of (6.23), F̄ obeys an algebraic equation for a given set of E(ν)

and F j
(ν). This can be written in the form

F̄ 2 =
hαγM αβ

(ν) uβM γσ
(ν) uσ

M αβ
(ν) uαuβ

, (6.24)

where for M αβ
(ν) , Eq. (3.29) is used with Eq. (6.21). In numerical simulation, we have

to solve this equation numerically.
Livermore proposed several functions for χ(F̄ ), e.g.,

χ =
3 + 4F̄ 2

5 + 2
√

4 − 3F̄ 2
. (6.25)
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term, ∂(νJ(ν))/∂ν, for simplicity. The reason is that in its presence, P ij
(ν) is not

written by E(ν) and F i
(ν) in a straightforward manner (although it is possible to do

in an approximate manner). For the frequency-integrated case, this term vanishes,
and hence, we may say that the radiation viscosity effect is taken into account in
a frequency-averaged way. However, in this treatment, the low-energy neutrinos,
which should not contribute to the radiation viscosity for degenerate neutrinos, may
incorrectly play a role. To avoid this unphysical contribution, it will be appropriate to
artificially reduce l̄(ν) to zero for hν <∼ µc − kbT when treating degenerate neutrinos.

Assuming that Eq. (6.13) holds with the omission of the third term, we have
the relations

E(ν) =
[4w2 − 1

3
− σ0

]
J(ν) + 2H(ν)jV

j , (6.14)

F(ν)i =
[4
3
wui + σi

]
J(ν) + wH(ν)i +

ui

w
H(ν)jV

j , (6.15)

where V i = γijuj (Vi = ui), and

σ0 =
4l̄(ν)

15
σαβnαnβ, σi =

4l̄(ν)

15
σαβnαγβi. (6.16)

Also, we used H(ν)αuα = 0 and H 0
(ν) = (αw)−1H(ν)iV

i. Equations (6.14) and (6.15)
constitute simultaneous equations for J(ν) and H(ν)i. Inverting them yields

J(ν) =
[2w2 + 1

3
+ σ0

]−1
[
(2w2 − 1)E(ν) − 2wF k

(ν)uk

]
, (6.17)

H(ν)i =
1
w

F(ν)i +
1

w(2w2 + 1 + 3σ0)

[
−[4w3ui + 3(2w2 − 1)σi + 3σ0wui]E(ν)

+[(4w2 + 1)ui + 6wσi + 3σ0ui]F k
(ν)uk

]
. (6.18)

Note that F k
(ν)uk = F(ν)kV

k but H(ν)kV
k #= H k

(ν)uk; H k
(ν) = (γkl−βkγlmum/αw)H(ν)l.

Also wσ0 = −σiV i. Then, P ij
(ν) is given by

P ij
(ν) = J(ν)

[γij + 4V iV j

3
−

4l̄(ν)

15
σklγ i

k γ j
l

]
+ H i

(ν)V
j + H j

(ν)V
i, (6.19)

where J(ν) and H k
(ν)(= γk

µH µ
(ν)) are given by Eqs. (6.17) and (6.18). With this

closure relation for P ij
(ν) , the necessary condition for the radiation fields, gαβTαβ

rad = 0,
is guaranteed to be satisfied.

We note that with the closure relation (6.19), the first-order term in l(ν) may be
accidentally larger than the zeroth-order term for a high value of σij . Thus, it may
be necessary to change the definition of l̄(ν) as

l̄(ν) = min
[ 1
κ̄(ν)

, Cσ

( V kuk

σαβσαβ

)1/2]
, (6.20)

where Cσ is a coefficient smaller than unity.
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j + H j
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where J(ν) and H k
(ν)(= γk
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(ν)) are given by Eqs. (6.17) and (6.18). With this

closure relation for P ij
(ν) , the necessary condition for the radiation fields, gαβTαβ

rad = 0,
is guaranteed to be satisfied.

We note that with the closure relation (6.19), the first-order term in l(ν) may be
accidentally larger than the zeroth-order term for a high value of σij . Thus, it may
be necessary to change the definition of l̄(ν) as

l̄(ν) = min
[ 1
κ̄(ν)
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where Cσ is a coefficient smaller than unity.
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We note that in an FLD approximation, the first-order solution for H α
(ν) is mod-

ified as

H α
(ν) = −

l̃(ν)

3 + l̃(ν)J
−1
(ν)u

γ∇γJ(ν)

hαβ
[
∇βJ(ν) +

(
4J(ν) −

∂

∂ν
(νJ(ν))

)
uγ∇γuβ

]
,

(5.23)

and is then substituted in Eq. (3.22). With this prescription, the equation for J(ν)

reduces to a wave equation with the characteristic speed ∼ c for the case that l̃(ν) is
much longer than a characteristic length scale of the system.

§6. Closure relations

In the truncated moment formalism derived in §3, we proposed to solve the
equations for E(ν) and F i

(ν) but not to solve that for P ij
(ν) , which is assumed to

be determined in terms of E(ν) and F i
(ν). In this section, we propose a physically

reasonable closure relation.

6.1. Optically thin case
In the limit that the optical depth is zero, the emission, absorption, and scat-

tering are negligible. When the source term of the radiation field equations can be
neglected, the radiation freely propagates, and the radiation moments should obey
a wave equation with no source.

One example for such region is the asymptotically flat region, far from the ra-
diation source where curved spacetime effects as well as hydrodynamic effects play
a tiny role (e.g., we may consider uµ ≈ nµ, J(ν) ≈ E(ν), and H α

(ν) ≈ F α
(ν) as already

mentioned in §§2 and 3). Thus, any closure relation assumed has to satisfy at least
the equations in the flat spacetime.

For the flat spacetime, we obtain the equation for F j
(ν) from Eq. (3.37)

∂j(
√

ηF j
(ν)) = 0, (6.1)

where η is the determinant of the flat three metric ηij . This provides a reasonable
solution of F j

(ν) for the spatial infinity; for the spherically symmetric flow, F r
(ν) ∝ r−2,

and for the plane symmetric flow, F i
(ν) = constant for the flow direction. On the

other hand, Eq. (3.38) gives

∂k(
√

ηP k
(ν) j) =

√
η

2
P ik

(ν) ∂jηik. (6.2)

For an appropriate solution of E(ν), the following closure relation is the first
candidate (and is that we finally choose):

P αβ
(ν) = E(ν)

F α
(ν)F

β
(ν)

γijF i
(ν)F

j
(ν)

. (6.3)
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6.3. Grey zone
For a solution of the radiation fields in the optically grey zone, in general, it is

necessary to fully solve the radiation transfer equation in general relativity. However,
it is not possible in the framework of truncated moment formalism and far beyond
the scope of this paper. We propose an approximate method which is essentially the
same as the variable Eddington factor method.14) In this prescription, P ij

(ν) is given
by

P ij
(ν) =

3χ − 1
2

(P ij
(ν))thin +

3(1 − χ)
2

(P ij
(ν))thick, (6.21)

where χ is the so-called variable Eddington factor, which is χ = 1/3 in the optically
thick limit and χ = 1 in the optically thin limit. Following Ref. 14), we choose that
χ is a function of F̄ , for which in general relativity, the candidates are

F̄ :=
(γijF i

(ν)F
j

(ν)

E2
(ν)

)1/2

, (6.22)

and

F̄ :=
(hαβH α

(ν)H
β

(ν)

J2
(ν)

)1/2

. (6.23)

For the optically thick and thin limits, F̄ = 0 and F̄ = 1, respectively. For giving a
correct value of F̄ in the optically thick limit, Eq. (6.23) should be chosen because
H α

(ν) should be zero in the comoving frame; if the fluid has a large uniform velocity,
the value of F̄ in Eq. (6.22) would be highly different from zero even in an optically
thick medium. For giving a correct value of F̄ in the optically thin limit, both
Eqs. (6.22) and (6.23) can be chosen, because in such a limit, M αβ

(ν) is proportional
to J(ν)p

αpβ (pα is a null vector) and F̄ = 1 for the null fluid in both definitions (see
§3). For this reason, we choose Eq. (6.23) for F̄ .

With the choice of (6.23), F̄ obeys an algebraic equation for a given set of E(ν)

and F j
(ν). This can be written in the form

F̄ 2 =
hαγM αβ

(ν) uβM γσ
(ν) uσ

M αβ
(ν) uαuβ

, (6.24)

where for M αβ
(ν) , Eq. (3.29) is used with Eq. (6.21). In numerical simulation, we have

to solve this equation numerically.
Livermore proposed several functions for χ(F̄ ), e.g.,

χ =
3 + 4F̄ 2

5 + 2
√

4 − 3F̄ 2
. (6.25)
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expressed by Equations (A25) and (A27) as described in Castor
(2004).

Finally, we describe the advection term for φ, which is
necessary for three-dimensional calculations. The advection
term is expressed in terms of µ as

[√
1 − µ2

ν sin φν

r sin θ

∂f

∂φ

]

=
[√

1 − µ2
ν sin φν

r
√

1 − µ2

∂f

∂φ

]

= 3
2

r2
Ir

− r2
Ir−1

r3
Ir

− r3
Ir−1

(
1 − µν

2
jθ

) 1
2

sin φν jφ

(
1 − µ2

iθ

) 1
2

× 1
dφiφ

[
fIφ

− fIφ−1
]
. (A29)

The evaluation of fIφ
is made by

sin φν jφ
fIφ

=
sin φν jφ

+ |sin φν jφ
|

2

[
βIφ

fiφ +
(
1 − βIφ

)
fiφ+1

]

+
sin φν jφ

− |sin φν jφ
|

2

[(
1 − βIφ

)
fiφ + βIφ

fiφ+1
]
,

(A30)

depending on the sign of sin φν jφ
. The form of βIφ

is given by
a smooth function, which is similar to βIr

and βIθ
. This form

of φ-advection fulfills the steady state in infinite homogenous
matter and the advection vanishes when fiφ is constant.

A.4. Moments of Energy and Angle

We define the moments of energy and angle of the neutrino
distributions. All evaluations here are done using the quantities
in the inertial frame, though we dropped superscripts for the
compactness. First of all, the neutrino density is evaluated by

nν =
∫

dεε2

(2π )3

∫
dΩf (ε, Ω). (A31)

The first moment of energy is defined by

〈ε〉 = Eν

nν

, (A32)

where the energy density of neutrinos is given by

Eν =
∫

dεε2

(2π )3

∫
dΩεf (ε, Ω). (A33)

The first moment of angle is defined by

〈µν〉 = f r
ν

nν

, (A34)

where the radial number flux is given by

f r
ν =

∫
dεε2

(2π )3

∫
dΩnrf (ε, Ω). (A35)

The polar and azimuthal fluxes are obtained by

f θ
ν =

∫
dε ε2

(2π )3

∫
dΩnθf (ε, Ω), (A36)

f φ
ν =

∫
dε ε2

(2π )3

∫
dΩnφf (ε, Ω). (A37)

The radial luminosity of neutrinos is defined by

Lν = 4πr2Fν, (A38)

where the energy flux is given by

Fν =
∫

dε ε2

(2π )3

∫
dΩεnrf (ε, Ω). (A39)

The second moment of angle is defined by

〈µ2
ν〉 = 1

nν

∫
dε ε2

(2π )3

∫
dΩnrnrf (ε, Ω). (A40)

We evaluate the elements of the Eddington tensor as defined by

kij = P
ij
ν

Eν

, (A41)

where the elements of the pressure tensor are defined by

P ij
ν =

∫
dε ε2

(2π )3

∫
dΩεninjf (ε, Ω). (A42)

The subscripts i and j denote one of the three components of r,
θ , and φ. The diagonal elements in the spherical coordinate are
krr, kθθ , and kφφ . The non-diagonal elements, krθ , krφ , and kθφ ,
may be non-zero in 3D calculations, while they are zero under
spherical symmetry. For the treatment with the multi-energy
group, we utilize the integrand of Equations (A33) and (A42)
with the angle average. We evaluate the Eddington tensor for
each energy zone by

kij (εk) =
∫

dΩninjf (εk, Ω)∫
dΩf (εk, Ω)

, (A43)

dropping off the common factor of the energy phase space.

A.5. Computing Size

We describe briefly the size of memory and computational
load necessary for the current simulations, as well as larger sim-
ulations in the future. The typical size of memory requirement
for the numerical calculations in Sections 5.2 and 5.3 is ∼30 GB
in the case of Nr = 200, Nθ = 9, and Nφ = 9 with Nε = 14,
Nθν

= 6, and Nφν
= 12. This includes the matrices for the

equations and the vectors for the neutrino distributions for three
species. We need ∼130 MB to store the neutrino distribution
for each species. It takes ∼100 s to proceed one time step on
1 node (32 cpu) of Hitachi SR16000. Our largest calculation in
the current report is the case of the diffusion of the 3D Gaus-
sian packet in Section 4.1.1. It uses ∼900 GB of memory on
NEC SX9 (8 cpu) for the case of a fine mesh. Note that this
specification of the computational speed is obtained within the
basic optimization and the automatic parallelization. A parallel
version of the numerical code for massive parallel architectures
is ready for tests. In future, we would need the full coverage
of the sphere with a high resolution by Nr = 400, Nθ = 64,
and Nφ = 128, for example, for the spatial grid. The memory
requirement would be ∼6 TB for the program and ∼26 GB for
the neutrino distribution, which are available on the recent su-
percomputers. We plan to perform such large-scale simulations
after we optimize the numerical code with the parallelization.
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expressed by Equations (A25) and (A27) as described in Castor
(2004).

Finally, we describe the advection term for φ, which is
necessary for three-dimensional calculations. The advection
term is expressed in terms of µ as
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The evaluation of fIφ
is made by
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|

2

[
βIφ

fiφ +
(
1 − βIφ

)
fiφ+1

]

+
sin φν jφ

− |sin φν jφ
|

2

[(
1 − βIφ

)
fiφ + βIφ

fiφ+1
]
,

(A30)

depending on the sign of sin φν jφ
. The form of βIφ

is given by
a smooth function, which is similar to βIr

and βIθ
. This form

of φ-advection fulfills the steady state in infinite homogenous
matter and the advection vanishes when fiφ is constant.

A.4. Moments of Energy and Angle

We define the moments of energy and angle of the neutrino
distributions. All evaluations here are done using the quantities
in the inertial frame, though we dropped superscripts for the
compactness. First of all, the neutrino density is evaluated by

nν =
∫

dεε2

(2π )3

∫
dΩf (ε, Ω). (A31)

The first moment of energy is defined by

〈ε〉 = Eν

nν

, (A32)

where the energy density of neutrinos is given by

Eν =
∫

dεε2

(2π )3

∫
dΩεf (ε, Ω). (A33)

The first moment of angle is defined by

〈µν〉 = f r
ν

nν

, (A34)

where the radial number flux is given by

f r
ν =

∫
dεε2

(2π )3

∫
dΩnrf (ε, Ω). (A35)

The polar and azimuthal fluxes are obtained by

f θ
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∫
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∫
dΩnθf (ε, Ω), (A36)

f φ
ν =

∫
dε ε2
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∫
dΩnφf (ε, Ω). (A37)

The radial luminosity of neutrinos is defined by

Lν = 4πr2Fν, (A38)

where the energy flux is given by

Fν =
∫

dε ε2
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∫
dΩεnrf (ε, Ω). (A39)

The second moment of angle is defined by

〈µ2
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∫
dΩnrnrf (ε, Ω). (A40)

We evaluate the elements of the Eddington tensor as defined by

kij = P
ij
ν

Eν

, (A41)

where the elements of the pressure tensor are defined by

P ij
ν =

∫
dε ε2

(2π )3

∫
dΩεninjf (ε, Ω). (A42)

The subscripts i and j denote one of the three components of r,
θ , and φ. The diagonal elements in the spherical coordinate are
krr, kθθ , and kφφ . The non-diagonal elements, krθ , krφ , and kθφ ,
may be non-zero in 3D calculations, while they are zero under
spherical symmetry. For the treatment with the multi-energy
group, we utilize the integrand of Equations (A33) and (A42)
with the angle average. We evaluate the Eddington tensor for
each energy zone by

kij (εk) =
∫

dΩninjf (εk, Ω)∫
dΩf (εk, Ω)

, (A43)

dropping off the common factor of the energy phase space.

A.5. Computing Size

We describe briefly the size of memory and computational
load necessary for the current simulations, as well as larger sim-
ulations in the future. The typical size of memory requirement
for the numerical calculations in Sections 5.2 and 5.3 is ∼30 GB
in the case of Nr = 200, Nθ = 9, and Nφ = 9 with Nε = 14,
Nθν

= 6, and Nφν
= 12. This includes the matrices for the

equations and the vectors for the neutrino distributions for three
species. We need ∼130 MB to store the neutrino distribution
for each species. It takes ∼100 s to proceed one time step on
1 node (32 cpu) of Hitachi SR16000. Our largest calculation in
the current report is the case of the diffusion of the 3D Gaus-
sian packet in Section 4.1.1. It uses ∼900 GB of memory on
NEC SX9 (8 cpu) for the case of a fine mesh. Note that this
specification of the computational speed is obtained within the
basic optimization and the automatic parallelization. A parallel
version of the numerical code for massive parallel architectures
is ready for tests. In future, we would need the full coverage
of the sphere with a high resolution by Nr = 400, Nθ = 64,
and Nφ = 128, for example, for the spatial grid. The memory
requirement would be ∼6 TB for the program and ∼26 GB for
the neutrino distribution, which are available on the recent su-
percomputers. We plan to perform such large-scale simulations
after we optimize the numerical code with the parallelization.
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expressed by Equations (A25) and (A27) as described in Castor
(2004).

Finally, we describe the advection term for φ, which is
necessary for three-dimensional calculations. The advection
term is expressed in terms of µ as
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The evaluation of fIφ
is made by
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depending on the sign of sin φν jφ
. The form of βIφ

is given by
a smooth function, which is similar to βIr

and βIθ
. This form

of φ-advection fulfills the steady state in infinite homogenous
matter and the advection vanishes when fiφ is constant.

A.4. Moments of Energy and Angle

We define the moments of energy and angle of the neutrino
distributions. All evaluations here are done using the quantities
in the inertial frame, though we dropped superscripts for the
compactness. First of all, the neutrino density is evaluated by

nν =
∫

dεε2

(2π )3

∫
dΩf (ε, Ω). (A31)

The first moment of energy is defined by

〈ε〉 = Eν

nν

, (A32)

where the energy density of neutrinos is given by

Eν =
∫

dεε2

(2π )3

∫
dΩεf (ε, Ω). (A33)

The first moment of angle is defined by

〈µν〉 = f r
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, (A34)

where the radial number flux is given by

f r
ν =

∫
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∫
dΩnrf (ε, Ω). (A35)

The polar and azimuthal fluxes are obtained by

f θ
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∫
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∫
dΩnθf (ε, Ω), (A36)

f φ
ν =

∫
dε ε2

(2π )3

∫
dΩnφf (ε, Ω). (A37)

The radial luminosity of neutrinos is defined by

Lν = 4πr2Fν, (A38)

where the energy flux is given by

Fν =
∫

dε ε2

(2π )3

∫
dΩεnrf (ε, Ω). (A39)

The second moment of angle is defined by

〈µ2
ν〉 = 1

nν

∫
dε ε2

(2π )3

∫
dΩnrnrf (ε, Ω). (A40)

We evaluate the elements of the Eddington tensor as defined by

kij = P
ij
ν

Eν

, (A41)

where the elements of the pressure tensor are defined by

P ij
ν =

∫
dε ε2

(2π )3

∫
dΩεninjf (ε, Ω). (A42)

The subscripts i and j denote one of the three components of r,
θ , and φ. The diagonal elements in the spherical coordinate are
krr, kθθ , and kφφ . The non-diagonal elements, krθ , krφ , and kθφ ,
may be non-zero in 3D calculations, while they are zero under
spherical symmetry. For the treatment with the multi-energy
group, we utilize the integrand of Equations (A33) and (A42)
with the angle average. We evaluate the Eddington tensor for
each energy zone by

kij (εk) =
∫

dΩninjf (εk, Ω)∫
dΩf (εk, Ω)

, (A43)

dropping off the common factor of the energy phase space.

A.5. Computing Size

We describe briefly the size of memory and computational
load necessary for the current simulations, as well as larger sim-
ulations in the future. The typical size of memory requirement
for the numerical calculations in Sections 5.2 and 5.3 is ∼30 GB
in the case of Nr = 200, Nθ = 9, and Nφ = 9 with Nε = 14,
Nθν

= 6, and Nφν
= 12. This includes the matrices for the

equations and the vectors for the neutrino distributions for three
species. We need ∼130 MB to store the neutrino distribution
for each species. It takes ∼100 s to proceed one time step on
1 node (32 cpu) of Hitachi SR16000. Our largest calculation in
the current report is the case of the diffusion of the 3D Gaus-
sian packet in Section 4.1.1. It uses ∼900 GB of memory on
NEC SX9 (8 cpu) for the case of a fine mesh. Note that this
specification of the computational speed is obtained within the
basic optimization and the automatic parallelization. A parallel
version of the numerical code for massive parallel architectures
is ready for tests. In future, we would need the full coverage
of the sphere with a high resolution by Nr = 400, Nθ = 64,
and Nφ = 128, for example, for the spatial grid. The memory
requirement would be ∼6 TB for the program and ∼26 GB for
the neutrino distribution, which are available on the recent su-
percomputers. We plan to perform such large-scale simulations
after we optimize the numerical code with the parallelization.
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expressed by Equations (A25) and (A27) as described in Castor
(2004).

Finally, we describe the advection term for φ, which is
necessary for three-dimensional calculations. The advection
term is expressed in terms of µ as
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The evaluation of fIφ
is made by
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(A30)

depending on the sign of sin φν jφ
. The form of βIφ

is given by
a smooth function, which is similar to βIr

and βIθ
. This form

of φ-advection fulfills the steady state in infinite homogenous
matter and the advection vanishes when fiφ is constant.

A.4. Moments of Energy and Angle

We define the moments of energy and angle of the neutrino
distributions. All evaluations here are done using the quantities
in the inertial frame, though we dropped superscripts for the
compactness. First of all, the neutrino density is evaluated by

nν =
∫

dεε2

(2π )3

∫
dΩf (ε, Ω). (A31)

The first moment of energy is defined by

〈ε〉 = Eν
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, (A32)

where the energy density of neutrinos is given by

Eν =
∫

dεε2

(2π )3

∫
dΩεf (ε, Ω). (A33)

The first moment of angle is defined by

〈µν〉 = f r
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, (A34)

where the radial number flux is given by

f r
ν =

∫
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∫
dΩnrf (ε, Ω). (A35)

The polar and azimuthal fluxes are obtained by
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∫
dΩnθf (ε, Ω), (A36)

f φ
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∫
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∫
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The radial luminosity of neutrinos is defined by

Lν = 4πr2Fν, (A38)

where the energy flux is given by

Fν =
∫
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∫
dΩεnrf (ε, Ω). (A39)

The second moment of angle is defined by
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We evaluate the elements of the Eddington tensor as defined by

kij = P
ij
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, (A41)

where the elements of the pressure tensor are defined by

P ij
ν =

∫
dε ε2

(2π )3

∫
dΩεninjf (ε, Ω). (A42)

The subscripts i and j denote one of the three components of r,
θ , and φ. The diagonal elements in the spherical coordinate are
krr, kθθ , and kφφ . The non-diagonal elements, krθ , krφ , and kθφ ,
may be non-zero in 3D calculations, while they are zero under
spherical symmetry. For the treatment with the multi-energy
group, we utilize the integrand of Equations (A33) and (A42)
with the angle average. We evaluate the Eddington tensor for
each energy zone by

kij (εk) =
∫

dΩninjf (εk, Ω)∫
dΩf (εk, Ω)

, (A43)

dropping off the common factor of the energy phase space.

A.5. Computing Size

We describe briefly the size of memory and computational
load necessary for the current simulations, as well as larger sim-
ulations in the future. The typical size of memory requirement
for the numerical calculations in Sections 5.2 and 5.3 is ∼30 GB
in the case of Nr = 200, Nθ = 9, and Nφ = 9 with Nε = 14,
Nθν

= 6, and Nφν
= 12. This includes the matrices for the

equations and the vectors for the neutrino distributions for three
species. We need ∼130 MB to store the neutrino distribution
for each species. It takes ∼100 s to proceed one time step on
1 node (32 cpu) of Hitachi SR16000. Our largest calculation in
the current report is the case of the diffusion of the 3D Gaus-
sian packet in Section 4.1.1. It uses ∼900 GB of memory on
NEC SX9 (8 cpu) for the case of a fine mesh. Note that this
specification of the computational speed is obtained within the
basic optimization and the automatic parallelization. A parallel
version of the numerical code for massive parallel architectures
is ready for tests. In future, we would need the full coverage
of the sphere with a high resolution by Nr = 400, Nθ = 64,
and Nφ = 128, for example, for the spatial grid. The memory
requirement would be ∼6 TB for the program and ∼26 GB for
the neutrino distribution, which are available on the recent su-
percomputers. We plan to perform such large-scale simulations
after we optimize the numerical code with the parallelization.
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expressed by Equations (A25) and (A27) as described in Castor
(2004).

Finally, we describe the advection term for φ, which is
necessary for three-dimensional calculations. The advection
term is expressed in terms of µ as
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depending on the sign of sin φν jφ
. The form of βIφ

is given by
a smooth function, which is similar to βIr

and βIθ
. This form

of φ-advection fulfills the steady state in infinite homogenous
matter and the advection vanishes when fiφ is constant.

A.4. Moments of Energy and Angle

We define the moments of energy and angle of the neutrino
distributions. All evaluations here are done using the quantities
in the inertial frame, though we dropped superscripts for the
compactness. First of all, the neutrino density is evaluated by
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∫
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(2π )3

∫
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The first moment of energy is defined by
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where the energy density of neutrinos is given by
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where the radial number flux is given by
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∫
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The radial luminosity of neutrinos is defined by

Lν = 4πr2Fν, (A38)

where the energy flux is given by
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We evaluate the elements of the Eddington tensor as defined by

kij = P
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, (A41)

where the elements of the pressure tensor are defined by

P ij
ν =

∫
dε ε2

(2π )3

∫
dΩεninjf (ε, Ω). (A42)

The subscripts i and j denote one of the three components of r,
θ , and φ. The diagonal elements in the spherical coordinate are
krr, kθθ , and kφφ . The non-diagonal elements, krθ , krφ , and kθφ ,
may be non-zero in 3D calculations, while they are zero under
spherical symmetry. For the treatment with the multi-energy
group, we utilize the integrand of Equations (A33) and (A42)
with the angle average. We evaluate the Eddington tensor for
each energy zone by

kij (εk) =
∫

dΩninjf (εk, Ω)∫
dΩf (εk, Ω)

, (A43)

dropping off the common factor of the energy phase space.

A.5. Computing Size

We describe briefly the size of memory and computational
load necessary for the current simulations, as well as larger sim-
ulations in the future. The typical size of memory requirement
for the numerical calculations in Sections 5.2 and 5.3 is ∼30 GB
in the case of Nr = 200, Nθ = 9, and Nφ = 9 with Nε = 14,
Nθν

= 6, and Nφν
= 12. This includes the matrices for the

equations and the vectors for the neutrino distributions for three
species. We need ∼130 MB to store the neutrino distribution
for each species. It takes ∼100 s to proceed one time step on
1 node (32 cpu) of Hitachi SR16000. Our largest calculation in
the current report is the case of the diffusion of the 3D Gaus-
sian packet in Section 4.1.1. It uses ∼900 GB of memory on
NEC SX9 (8 cpu) for the case of a fine mesh. Note that this
specification of the computational speed is obtained within the
basic optimization and the automatic parallelization. A parallel
version of the numerical code for massive parallel architectures
is ready for tests. In future, we would need the full coverage
of the sphere with a high resolution by Nr = 400, Nθ = 64,
and Nφ = 128, for example, for the spatial grid. The memory
requirement would be ∼6 TB for the program and ∼26 GB for
the neutrino distribution, which are available on the recent su-
percomputers. We plan to perform such large-scale simulations
after we optimize the numerical code with the parallelization.
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expressed by Equations (A25) and (A27) as described in Castor
(2004).

Finally, we describe the advection term for φ, which is
necessary for three-dimensional calculations. The advection
term is expressed in terms of µ as
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depending on the sign of sin φν jφ
. The form of βIφ

is given by
a smooth function, which is similar to βIr

and βIθ
. This form

of φ-advection fulfills the steady state in infinite homogenous
matter and the advection vanishes when fiφ is constant.

A.4. Moments of Energy and Angle

We define the moments of energy and angle of the neutrino
distributions. All evaluations here are done using the quantities
in the inertial frame, though we dropped superscripts for the
compactness. First of all, the neutrino density is evaluated by
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Lν = 4πr2Fν, (A38)

where the energy flux is given by

Fν =
∫

dε ε2

(2π )3

∫
dΩεnrf (ε, Ω). (A39)

The second moment of angle is defined by

〈µ2
ν〉 = 1

nν

∫
dε ε2

(2π )3

∫
dΩnrnrf (ε, Ω). (A40)

We evaluate the elements of the Eddington tensor as defined by

kij = P
ij
ν

Eν

, (A41)

where the elements of the pressure tensor are defined by

P ij
ν =

∫
dε ε2

(2π )3

∫
dΩεninjf (ε, Ω). (A42)

The subscripts i and j denote one of the three components of r,
θ , and φ. The diagonal elements in the spherical coordinate are
krr, kθθ , and kφφ . The non-diagonal elements, krθ , krφ , and kθφ ,
may be non-zero in 3D calculations, while they are zero under
spherical symmetry. For the treatment with the multi-energy
group, we utilize the integrand of Equations (A33) and (A42)
with the angle average. We evaluate the Eddington tensor for
each energy zone by

kij (εk) =
∫

dΩninjf (εk, Ω)∫
dΩf (εk, Ω)

, (A43)

dropping off the common factor of the energy phase space.

A.5. Computing Size

We describe briefly the size of memory and computational
load necessary for the current simulations, as well as larger sim-
ulations in the future. The typical size of memory requirement
for the numerical calculations in Sections 5.2 and 5.3 is ∼30 GB
in the case of Nr = 200, Nθ = 9, and Nφ = 9 with Nε = 14,
Nθν

= 6, and Nφν
= 12. This includes the matrices for the

equations and the vectors for the neutrino distributions for three
species. We need ∼130 MB to store the neutrino distribution
for each species. It takes ∼100 s to proceed one time step on
1 node (32 cpu) of Hitachi SR16000. Our largest calculation in
the current report is the case of the diffusion of the 3D Gaus-
sian packet in Section 4.1.1. It uses ∼900 GB of memory on
NEC SX9 (8 cpu) for the case of a fine mesh. Note that this
specification of the computational speed is obtained within the
basic optimization and the automatic parallelization. A parallel
version of the numerical code for massive parallel architectures
is ready for tests. In future, we would need the full coverage
of the sphere with a high resolution by Nr = 400, Nθ = 64,
and Nφ = 128, for example, for the spatial grid. The memory
requirement would be ∼6 TB for the program and ∼26 GB for
the neutrino distribution, which are available on the recent su-
percomputers. We plan to perform such large-scale simulations
after we optimize the numerical code with the parallelization.
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expressed by Equations (A25) and (A27) as described in Castor
(2004).

Finally, we describe the advection term for φ, which is
necessary for three-dimensional calculations. The advection
term is expressed in terms of µ as
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depending on the sign of sin φν jφ
. The form of βIφ

is given by
a smooth function, which is similar to βIr

and βIθ
. This form

of φ-advection fulfills the steady state in infinite homogenous
matter and the advection vanishes when fiφ is constant.

A.4. Moments of Energy and Angle

We define the moments of energy and angle of the neutrino
distributions. All evaluations here are done using the quantities
in the inertial frame, though we dropped superscripts for the
compactness. First of all, the neutrino density is evaluated by
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where the energy flux is given by

Fν =
∫

dε ε2

(2π )3

∫
dΩεnrf (ε, Ω). (A39)

The second moment of angle is defined by

〈µ2
ν〉 = 1

nν

∫
dε ε2

(2π )3

∫
dΩnrnrf (ε, Ω). (A40)
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where the elements of the pressure tensor are defined by
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The subscripts i and j denote one of the three components of r,
θ , and φ. The diagonal elements in the spherical coordinate are
krr, kθθ , and kφφ . The non-diagonal elements, krθ , krφ , and kθφ ,
may be non-zero in 3D calculations, while they are zero under
spherical symmetry. For the treatment with the multi-energy
group, we utilize the integrand of Equations (A33) and (A42)
with the angle average. We evaluate the Eddington tensor for
each energy zone by

kij (εk) =
∫

dΩninjf (εk, Ω)∫
dΩf (εk, Ω)

, (A43)

dropping off the common factor of the energy phase space.

A.5. Computing Size

We describe briefly the size of memory and computational
load necessary for the current simulations, as well as larger sim-
ulations in the future. The typical size of memory requirement
for the numerical calculations in Sections 5.2 and 5.3 is ∼30 GB
in the case of Nr = 200, Nθ = 9, and Nφ = 9 with Nε = 14,
Nθν

= 6, and Nφν
= 12. This includes the matrices for the

equations and the vectors for the neutrino distributions for three
species. We need ∼130 MB to store the neutrino distribution
for each species. It takes ∼100 s to proceed one time step on
1 node (32 cpu) of Hitachi SR16000. Our largest calculation in
the current report is the case of the diffusion of the 3D Gaus-
sian packet in Section 4.1.1. It uses ∼900 GB of memory on
NEC SX9 (8 cpu) for the case of a fine mesh. Note that this
specification of the computational speed is obtained within the
basic optimization and the automatic parallelization. A parallel
version of the numerical code for massive parallel architectures
is ready for tests. In future, we would need the full coverage
of the sphere with a high resolution by Nr = 400, Nθ = 64,
and Nφ = 128, for example, for the spatial grid. The memory
requirement would be ∼6 TB for the program and ∼26 GB for
the neutrino distribution, which are available on the recent su-
percomputers. We plan to perform such large-scale simulations
after we optimize the numerical code with the parallelization.
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expressed by Equations (A25) and (A27) as described in Castor
(2004).

Finally, we describe the advection term for φ, which is
necessary for three-dimensional calculations. The advection
term is expressed in terms of µ as
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depending on the sign of sin φν jφ
. The form of βIφ

is given by
a smooth function, which is similar to βIr

and βIθ
. This form

of φ-advection fulfills the steady state in infinite homogenous
matter and the advection vanishes when fiφ is constant.

A.4. Moments of Energy and Angle

We define the moments of energy and angle of the neutrino
distributions. All evaluations here are done using the quantities
in the inertial frame, though we dropped superscripts for the
compactness. First of all, the neutrino density is evaluated by

nν =
∫
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∫
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The first moment of energy is defined by

〈ε〉 = Eν

nν

, (A32)

where the energy density of neutrinos is given by

Eν =
∫

dεε2

(2π )3

∫
dΩεf (ε, Ω). (A33)

The first moment of angle is defined by

〈µν〉 = f r
ν

nν

, (A34)

where the radial number flux is given by
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The radial luminosity of neutrinos is defined by

Lν = 4πr2Fν, (A38)

where the energy flux is given by
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∫
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The second moment of angle is defined by
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We evaluate the elements of the Eddington tensor as defined by
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where the elements of the pressure tensor are defined by
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ν =

∫
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(2π )3

∫
dΩεninjf (ε, Ω). (A42)

The subscripts i and j denote one of the three components of r,
θ , and φ. The diagonal elements in the spherical coordinate are
krr, kθθ , and kφφ . The non-diagonal elements, krθ , krφ , and kθφ ,
may be non-zero in 3D calculations, while they are zero under
spherical symmetry. For the treatment with the multi-energy
group, we utilize the integrand of Equations (A33) and (A42)
with the angle average. We evaluate the Eddington tensor for
each energy zone by

kij (εk) =
∫

dΩninjf (εk, Ω)∫
dΩf (εk, Ω)

, (A43)

dropping off the common factor of the energy phase space.

A.5. Computing Size

We describe briefly the size of memory and computational
load necessary for the current simulations, as well as larger sim-
ulations in the future. The typical size of memory requirement
for the numerical calculations in Sections 5.2 and 5.3 is ∼30 GB
in the case of Nr = 200, Nθ = 9, and Nφ = 9 with Nε = 14,
Nθν

= 6, and Nφν
= 12. This includes the matrices for the

equations and the vectors for the neutrino distributions for three
species. We need ∼130 MB to store the neutrino distribution
for each species. It takes ∼100 s to proceed one time step on
1 node (32 cpu) of Hitachi SR16000. Our largest calculation in
the current report is the case of the diffusion of the 3D Gaus-
sian packet in Section 4.1.1. It uses ∼900 GB of memory on
NEC SX9 (8 cpu) for the case of a fine mesh. Note that this
specification of the computational speed is obtained within the
basic optimization and the automatic parallelization. A parallel
version of the numerical code for massive parallel architectures
is ready for tests. In future, we would need the full coverage
of the sphere with a high resolution by Nr = 400, Nθ = 64,
and Nφ = 128, for example, for the spatial grid. The memory
requirement would be ∼6 TB for the program and ∼26 GB for
the neutrino distribution, which are available on the recent su-
percomputers. We plan to perform such large-scale simulations
after we optimize the numerical code with the parallelization.
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エディントンテンソルの固有値・固有ベクトル解析
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L ：⻑軸の⽅向

1) Jacobi法でエディントンテンソルの固有値 λiと固有ベクトル(ai, bi, ci)を求める

2) 固有ベクトルを⻑軸・中軸・短軸の⽅向とし、固有値をそれぞれの係数とした楕円体で可視化

3) ボルツマンとM1の結果を⽐較

楕円体

L V

F

エディントンテンソル

F ：ニュートリノフラックス

V ：物質の速度
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運動量空間におけるニュートリノ分布とエディントンテンソルの楕円

等⽅分布、FとVが⼀致 FとVがずれる FとLは並⾏ FとLがずれる 分布が球形から楕円に変形する過程で差が⽣じる



まとめ

近似法の検証、近似法の適⽤範囲の把握、近似法の改良などを⽬指し、ボ
ルツマン⽅程式を直接解く、第⼀原理計算を空間３次元で実⾏し、20msま
での結果を解析した。

エディントンテンソルの固有値・固有ベクトルを利⽤して、運動量空間に
おけるニュートリノ分布を楕円近似する解析⽅法を提案し、M1クロー
ジャー近似法との⽐較を⾏った。

M1クロージャー近似法では、光学的に厚くも薄くもない中間領域において、
ニュートリノ分布が等⽅から前⽅集中型へ変化する途中の扁平な分布のときに、
ボルツマンの結果を再現できないことがわかった。


