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Particle content of the model

3 generations of 
SM singlet right handed  
neutrinos (anomaly free)
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Table 1. The particle content of the model including the three generations of the right-handed
neutrinos (N i

R, i = 1, 2, 3) and a new scalar field (�).

The Yukawa sector of the model can be written in a gauge invariant way as
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⇤ and C is the charge conjugate. Due to the gauge invariance the Yukawa
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Further more using Eq. 2.1 the solutions to these conditions are listed in Table 1. Finally
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Charges before  
the anomaly cancellations

Charges after 
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anomaly 
cancellations
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Table 1: Particle content of the minimal U(1)X model, where i, j = 1, 2, 3 are the generation
indices. Without loss of generality, we fix x� = 1.

group, SU(3)c⇥SU(2)L⇥U(1)Y⇥U(1)X , where U(1)X is realized as a linear combination of the
SM U(1)Y and U(1)B�L symmetry (the so-called non-exotic U(1) extension of the SM [21]).
The particle content of the model is listed in Table 1. The structure of the model is the same
as the minimal B � L model except for the U(1)X charge assignment. In addition to the SM
particle content, this model includes three generations of RHNs required for the cancellation
of the gauge and the mixed-gravitational anomalies, a new Higgs field (�) which breaks the
U(1)X gauge symmetry, and a U(1)X gauge boson (Z 0). The U(1)X charges are defined in
terms of two real parameters xH and x�, which are the U(1)X charges associated with H and
�, respectively. In this model x� always appears as a product with the U(1)X gauge coupling
and is not an independent free parameter, which we fix to be x� = 1 throughout this letter.
Hence, U(1)X charges of the particles are defined by a single free parameter xH . Note that this
model is identical to the minimal B � L model in the limit of xH = 0.

The Yukawa sector of the SM is then extended to include
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where the first and second terms are the Dirac and Majorana Yukawa couplings. Here we
use a diagonal basis for the Majorana Yukawa coupling without loss of generality. After the
U(1)X and the EW symmetry breakings, U(1)X gauge boson mass, the Majorana masses for
the RHNs, and neutrino Dirac masses are generated:
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where gX is the U(1)X gauge coupling, v� is the � VEV, vh = 246 GeV is the SM Higgs VEV,
and we have used the LEP constraint [23, 24] v�2

� vh2.
Let us now consider the RHN production via Z 0 decay. The Z 0 boson partial decay widths

into a pair of SM chiral fermions (fL) and a pair of the Majorana RHNs, respectively, are given
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Due to the nonzero U(1)X charges the Z 0 boson interacts with the particles in the same way
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� for ` = e, µ process where the U(1)X coupling g

0 is

involved. Validating our analysis with the observed CMS [9] and ATLAS [10] bounds of
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The corresponding bounds are given in Fig. 1. We finally use these bounds for the further

analysis of the heavy neutrino production from Z
0 in our work. A diagram showing sterile

neutrino production and decay at the LHC considered can be seen in Figure 2. The

production cross-section of the heavy neutrino pair and the decay can be seen in Figure 3.

3 LHC sensitivity with displaced vertex searches (initial part of this

section has to be modified later)

For our study, we produce two UFO [45] models, based on the B�Lmodel in [8]. We adapt

it so that the light-heavy neutrino mixing and the sterile neutrino masses are treated as
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Figure 1: The branching ratios of Z 0 boson as a function of xH with a fixed mZ0 = 3 TeV.
The solid lines correspond to mN1 = mZ0/4 and mN2,3 > mZ0/2; the dashed (dotted) lines
correspond to mN1,2 = mZ0/4 and mN3 > mZ0/2 (mN1,2,3 = mZ0/4 ). From top to bottom, the
solid (red, black and blue) lines at xH = �1 are the branching ratios to the first generations of
jets (up and down quarks), RHNs , and charged leptons, respectively. The lines for the RHN
final states correspond to the sum of the branching ratio to all possible RHNs.
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where Nc = 1(3) is the color factor for lepton (quark), QfL is the U(1)X charge of the SM
fermion, and we have neglected all the SM fermion masses. In Fig. 1, we show the Z 0 bo-
son branching ratios for mZ0 = 3 TeV. The solid lines correspond to mN1 = mZ0/4 and
mN2,3 > mZ0/2, the dashed (dotted) lines correspond to mN1,2 = mZ0/4 and mN3 > mZ0/2
(mN1,2,3 = mZ0/4). For the SM final states, we show branching ratios to only the first gener-
ation dilepton and jets (sum of the jets from up and down quarks). The lines for the RHN
final states correspond to the sum of the branching ratio to all possible RHNs. The plot shows
the enhancement of RHNs branching ratios around xH = �0.8 with the maximum values of
the branching ratios, 0.09, 0.16, and 0.23 for the cases with one, two, and three generations
of RHNs, respectively. For the minimal B � L model (xH = 0), the branching ratios are 0.05,
0.09, and 0.13, respectively.

As we have discussed above, the current LHC bound on the Z 0 boson production into the
dilepton final states, which is very severe, requires BR(Z0!NN)

BR(Z0!`+`�) � 1 for the discovery of RHNs at

the future LHC. This ratio is nothing but the ratio between the partial decay widths, �(Z0!NN)
�(Z0! ¯̀̀ )

,
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Right handed neutrino pair production
MZ′� > 2MN (at least)

where C denotes taking charge-conjugation, and the first and second terms on the right-

hand side are the Dirac and Majorana Yukawa couplings, respectively. In order to break the

electroweak and the U(1)X gauge symmetries, we assume a suitable Higgs potential for H

and � to develop their VEVs

hHi =
1
p
2

0

@v

0

1

A , and h�i =
v�
p
2
, (2)

respectively at the potential minimum (with v ' 246 GeV and v� hitherto a free parameter).

After the symmetry breaking, the mass of the U(1)X gauge boson (Z 0 boson), the Majorana

masses for the RHNs and the neutrino Dirac masses are generated as follows:

mZ0 = gX

r
4v2

�
+

1

4
x2

H
v2 ' 2gXv�, (3)

mNi =
Y i

N
p
2
v�, (4)

mij

D
=

Y ij

D
p
2
v, (5)

where gX is the U(1)X gauge coupling. Here we have used the LEP [77], Tevatron [78]

and LHC [79] constraints which generically imply mZ0/gX & 6.9 TeV at 95% CL (for the

B � L case) to assume v2
�
� v2. Also, without loss of generality, we have set our basis

in which YN is diagonal. With the generation of the Dirac and Majorana masses, type-I

seesaw mechanism can be used to account for tiny Majorana masses of the light neutrino

mass eigenstates (see Section IV for more details).

B. Case-II: Alternative U(1)X Model

The other model we consider is the alternative U(1)X model, whose minimal particle

content is listed in Table II.1 Except for the alternative U(1)X charge assignment for the

RHNs, the fermion particle content is the same as in Table I. Note that when we assume the

1 Here, we list the scalar content essential for our discussion in this paper. With only this scalar particle

content, we have Nambu-Goldstone modes more than those eaten by the weak bosons and Z
0 boson since

mixing mass terms for the scalars are forbidden by the gauge symmetry. Thus, we need to introduce

additional (SM-singlet) scalar fields to eliminate phenomenologically dangerous massless modes. Since

there are many possibilities for new scalars and it is easy to arrange a suitable Higgs potential, we do not

discuss a complete Higgs sector in this paper.
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FIG. 2. Left: The lightest RHN pair-production cross sections (normalized by g
2

X
) from the Z

0

boson resonance for xH = 0 (solid), �1.2 (dashed) and 1 (dotted) in Case-I. Right: The production

cross sections (normalized by g
2

X
) for dilepton (solid) a pair of N1’s (dashed) and a pair of N2’s

(dotted) as a function of xH . Here we have chosen mN1 = 500 GeV, mN2 = 1 TeV and mN3 = 2

TeV. In the right panel, we have fixed mZ0 = 4 TeV.

a function of Z 0 boson mass.

Similarly, in the left panel of Fig. 2, we show the RHN pair production cross sections

from the Z 0 boson resonance for xH = 0 (solid), �1.2 (dashed) and 1 (dotted), respectively,

as a function of Z 0 boson mass. Here we have chosen mN1 = 500 GeV, mN2 = 1 TeV and

mN3 = 2 TeV, as in Fig. 1. For mZ0 = 4 TeV, we show in the right panel of Fig. 2 the

production cross sections for the dilepton (solid), a pair of N1’s (dashed) and a pair of N2’s

(dotted) as a function of xH . We can see that the RHN production cross section is enhanced

for xH . �1.5. As has been pointed out in Refs. [43, 44], the ratio of BR(Z 0
! NiNi) to

BR(Z 0
! `+`�) is maximized at xH = �1.2. For this choice, the RHN production process

from Z 0 boson resonance is optimized under the severe LHC dilepton constraints.

B. Case-II

We now repeat the same analysis for the alternative U(1)X model. For simplicity, we

assume all extra scalar fields are very heavy and cannot be produced on-shell from Z 0 boson

decay. Because of the alternative U(1)X charge assignment for the RHNs (see Table II),

the partial decay widths to RHNs in Eq. (12) are enhanced. As discussed in Ref. [86], the
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oscillation data [1], charged LFV phenomena [110–112] and electroweak precision measure-
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implies an RHN mass eigenstate can be long-lived. If this is the case, a long-lived RHN, once

produced at collider experiments through the Z 0-portal which is unsuppressed by the small

mixing, decays into the SM particles after propagating over a measurable distance. This

displaced vertex phenomenon is a characteristic signature of the production of long-lived

particles. For RHNs with mass of the TeV-scale scale or smaller, collider searches for the

RHNs with displaced vertex provide a promising probe of the seesaw mechanism [24].

Let us now evaluate the lifetime of RHNs in a general parametrization of neutrino mixing.

We first consider Case-I in which three RHNs are involved in the seesaw mechanism. As

we will discuss later, the results for Case-II with only two RHNs can be obtained from the

results in Case-I in a special limit. The elements of the matrix R are constrained so as

to reproduce the neutrino oscillation data. In our analysis, we adopt the following best-

fit values for the neutrino oscillation parameters: �m2

12
= m2

2
� m2

1
= 7.6 ⇥ 10�5 eV2,

�m2

23
= |m2

3
�m2

2
| = 2.4⇥ 10�3 eV2, sin2 2✓12 = 0.87, sin2 2✓23 = 1.0, and sin2 2✓13 = 0.092,

from a recent global fit [116]. The 3⇥ 3 neutrino mixing matrix is given by
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0 ei⇢1 0
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1

CCCA
, (21)

where cij = cos ✓ij and sij = sin ✓ij. In our analysis, we set the Dirac CP -phase as � = 3⇡

2

as indicated by the recent NO⌫A [117] and T2K [118] data while the Majorana phases ⇢1,2

are set as free parameters.

We consider both normal hierarchy (NH) where the light neutrino mass eigenvalues are

ordered as m1 < m2 < m3 and inverted hierarchy (IH) where the light neutrino mass

eigenvalues are ordered as m3 < m1 < m2. We vary the lightest mass eigenvalue mlightest up

to sub-eV scale, to be consistent with the Planck upper limit on the sum of light neutrino

masses:
P

i
mi < 0.12 eV [119].

The seesaw formula allows us to parameterize the mixing angle between the light and

heavy neutrinos as [120]

R
NH/IH = U⇤

PMNS

p

DNH/IH O
q
m�1

N
, (22)
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NoνA, T2K

originates from the Dirac Yukawa coupling in Eq. (1). The total decay width of the RHN

Ni is just the sum of the partial widths:

�NH/IH

Ni
=

X

↵=e,µ,⌧

⇥
�(Ni ! `↵W )NH/IH + �(Ni ! ⌫↵Z)

NH/IH + �(Ni ! ⌫↵h)
NH/IH

⇤
, (28)

and the total proper decay length of the RHN Ni is

LNH/IH

i
=

1.97⇥ 10�13

�NH/IH

Ni
[GeV]

[mm]. (29)

Employing the general parametrization for the neutrino Dirac mass matrix in Eq. (22),

we perform a parameter scan with free parameters, 0  ⇢1,2  2⇡, mlightest, x, y, and z, to

evaluate LNH/IH

i
while satisfying all the phenomenological constraints listed in Ref. [11]. For

concreteness, we fix mN1 = 500 GeV, mN2 = 1 TeV and mN3 = 2 TeV in our analysis. See

Ref. [11] for a detail of this parameter scan procedure. The most stringent lower bound on

the decay length of the RHN Ni comes from two experimental constraints. The first is from

LFV muon decay process of µ ! e�, whose branching ratio must be  4.2 ⇥ 10�13 [110]

which provides an upper bound on |✏12| < 1.3⇥ 10�5. The second is from the lower limit on

the half-life of neutrino-less double beta decay: T 0⌫

1/2
(76Ge) � 8⇥1025yr [122] that translates

into an upper limit on the amplitude for the contribution mediated by the RHNs [123, 124]:

�����

3X

j=1

Rej

mNj [GeV]

����� . 7.8⇥ 10�8 . (30)

Our results for the upper and lower bounds on LNH/IH

i
as a function of the lightest neutrino

mass eigenvalue are shown in Fig. 5 for the NH (left panel) and IH (right panel) cases in the

minimal U(1)X scenario. We also show as horizontal bands typical decay lengths relevant to

the displaced vertex search at the LHC and at MATHUSLA. The vertical shaded region is

excluded by the cosmological upper bound on the sum of light neutrino masses ⌃imi < 0.12

eV from the Planck 2018 results [119]. We find that the maximum proper decay length of

an RHN can be approximately expressed as

LNH

max
' 0.62

✓
0.001 eV

mlighest

◆✓
1TeV

mN1

◆
[mm] , (31)

LIH

max
' 0.15

✓
0.001 eV

mlighest

◆✓
1TeV

mN3

◆
[mm] . (32)

17

Partial decay width of RHN
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respectively. In the limit of mNi � mW ,mZ ,mh, the ratio among the partial decay widths
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minimal U(1)X scenario. We also show as horizontal bands typical decay lengths relevant to

the displaced vertex search at the LHC and at MATHUSLA. The vertical shaded region is

excluded by the cosmological upper bound on the sum of light neutrino masses ⌃imi < 0.12

eV from the Planck 2018 results [119]. We find that the maximum proper decay length of
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FIG. 5. Decay length of RHNs neutrinos as a function of lightest active neutrino mass for the NH

(IH) case in the left (right) panel for the three generations of RHNs with mN1 = 500 GeV, mN2 = 1

TeV and mN3 = 2 TeV. The upper (lower) curves correspond to the maximum (minimum) allowed

decay lifetime, taking into account various phenomenological constraints (see text). The horizontal

red (green) band indicates the typical range relevant for observable displaced vertex signal at the

LHC (MATHUSLA). The vertical shaded region is excluded by Planck upper limit on the sum of

neutrino masses.

Very interestingly, Lmax is controlled by the lightest neutrino mass eigenvalue mlighest, and

if mlighest is small enough, one RHN becomes long-lived even if its mass is of order of 1

TeV. This is contrary to the common lore that RHNs can be long-lived only for the sub-

electroweak scale mass range. We find that for mlighest . 10�5 eV (10�8 eV), the RHN can be

long-lived enough to be explored by the HL-LHC (MATHUSLA).2 For a di↵erent RHN mass

spectrum than that chosen in our illustrative benchmark, the corresponding decay lifetime

and the possibility of having a long-lived RHN can be easily obtained from Eqs. (31) and

(32).

In other words, once a displaced vertex signal is observed in future collider experiments,

we can measure the decay length and the mass of the RHN from the invariant mass of

its decay products. Fig. 5 indicates that with such measurements we can obtain an upper

bound on mlighest. On the other hand, the remaining two RHNs promptly decay to the SM

2 A detailed sensitivity study based on the expected number of events, which depends on other details, such

as the flavor of the final state lepton and the Lorentz boost factor of the RHN (which depends on the

specific production mode, i.e. the Z
0 boson mass in our case), is beyond the scope of this paper and is

postponed to a future work.
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Type − III seesaw

depend upon the mixings. As an example we may consider the pair production triplets

(charged multiplets in pair and charged and neutral multiplets productions) where the pro-

ductions processes do not depend upon the mixing directly, however, the dependence of the

the mixing comes at the time of the decay of the triplets. The generation of the neutrino

mass mechanism in the type-III seesaw is a type of seesaw mechanism where the Dirac

Yukawa coupling is always non-diagonal which gives rise to the Flavor Non-diagonal (FND)

scenario to correctly produce the neutrino oscillation data which will be considered in this

article. Depending upon the constraints we will show the allowed parameter space which

can be probed by the collider based experiments in the near future.

The paper is organized in the following way. In Sec. 2, we discuss the model and the

interactions of the triplet fermions with the SM particles. In the Sec. 3 we discuss general

parametrization of the Yukawa coupling and its e↵ect on the di↵erent production modes

and decay of the triplets. In the Sec. 4 we discuss about the branching ratios of the triplet

fermions under the general parameters. We study the possibility of the displaced vertices

from the type-III seesaw in Sec. 5. We discuss the results in Sec. 6 and finally conclude the

article in Sec. 7.

2. MODEL

In the type-III seesaw model SM is extended by three generations of an SU(2)L triplet

fermion ( ) with zero hypercharge. Inclusion of such triplets helps the generation of nonzero

but tiny neutrino mass through the seesaw mechanism. The Lagrangian can be written as

L = LSM + Tr( i�µDµ )�
1

2
MTr(  c + c )�

p
2(`LY

†
D
 H +H† YD`L) (1)

where Dµ represents the covariant derivative, M is the Majorana mass term. LSM is the

relevant part of the SM Lagrangian. We consider three degenerate generation of the triplets.

Therefore M is proportional to 13⇥3. YD is the Dirac Yukawa coupling between the SM

lepton doublet (`L), SM Higgs doublet (H) and the triplet fermion ( ). For brevity, we have

suppressed the generation indices. In this analysis we represent the relevant SM candidates,

the triplet fermion and its charged conjugate ( c = C 
T

) as in the following way
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After the breaking of the electroweak symmetry �0 acquires a vacuum expectation value

and we can express it as �0 = v+hp
2
with v = 246 GeV. To study the mixing between the SM

charged leptons and ⌃± we write the four degrees of freedom of each ⌃± in terms of a Dirac

spinor such as ⌃ = ⌃�
R
+ ⌃+c

R
where as ⌃0 are two component fermions with two degrees

of freedom. The corresponding Lagrangian after the electroweak symmetry breaking can be

written as

�Lmass =
⇣
eL ⌃L

⌘
0
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D
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0 M
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A+ h.c. (3)

where m` is the Dirac type SM charged lepton mass. The 3 ⇥ 3 Dirac mass of the triplets

can be written as

MD =
Y T

D
v

p
2
. (4)

Diagonalizing the neutrino mass matrix in Eq. 3 we can write the light neutrino mass

eigenvalue as

m⌫ ' �
v2

2
Y T

D
M�1YD = MDM

�1MT

D
(5)

hence the mixing between light and heavy mass eigenstates can be obtained as O(MDM�1).

Hence the light neutrino flavor eigenstate can be expressed in terms of the light and heavy

mass eigenstates in the following way

⌫ = A⌫m + V ⌃m (6)

where ⌫m and ⌃m represent the light and heavy mass eigenstates respectively where V =

MDM�1 and A =
⇣
1 � 1

2
✏̃
⌘
VPMNS with ✏̃ = V ⇤V T and VPMNS is the 3 ⇥ 3 neutrino mixing

matrix which diagonalizes the light neutrino mass matrix as

V T
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m⌫VPMNS = diag(m1,m2,m3). (7)

Due to the presence of ✏̃ the mixing matrix (A) becomes non-unitary, A†
A 6= 1. The charged

current (CC) interactions can be expressed in terms of the mass eigenstates including the

light heavy mixings as
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FIG. 1. Decay modes of ⌃0.
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respectively for the Majorana neutrinos. The corresponding Feynman Diagrams have been
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respectively. MW , MZ and Mh in the above expressions are the SM W , Z and Higgs boson

masses respectively. The corresponding Feynman Diagrams have been shown in Fig. 2. The

charged multiplet ⌃± and neutral multiplet ⌃0 are degenerate in mass at the tree-level. This

degeneracy is lifted up due to the radiative corrections induced by the SM gauge boson in

the loop. The estimations of this mass di↵erence �M is found in Ref. [76] and can be by:
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FIG. 2. Decay modes of ⌃±.

FIG. 3. Decay modes of ⌃± evolved from the mass splitting.

M > 500 GeV. If this mass splitting �M is larger than pion mass, then ⌃± will have the

following additional decay modes [76]

�(⌃±
! ⌃0⇡±) =

2G2

F
V 2

ud
�M3f 2

⇡

⇡

r
1�

m2
⇡

�M2

�(⌃±
! ⌃0e⌫e) =

2G2

F
�M5

15⇡
�(⌃±

! ⌃0µ⌫µ) = 0.12�(⌃±
! ⌃0e⌫e) (15)

which are independent of the free parameters. The corresponding Feynman Diagrams have

been shown in Fig. 3. The value of the Fermi Constant, GF , is 1.1663787 ⇥ 10�5 GeV�2,

the value of the CKM parameter (Vud) is 0.97420 ± 0.00021 and the decay constant of the

⇡ meson, f⇡, is 0.13 GeV from [77]. Notice that for vanishing mixing angles V`⌃, the ⌃±

dominantly decay into ⌃0, hence the decay width or the decay length is determined by �M

and is constant. On the contrary, for small mixing angles, ⌃0 decay width (decay length) is

very small (very large).
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FIG. 4. Bounds on ⌃i|V`⌃|
2 as a function of the m1(m3) NH (IH) case in the left (right) panel for

fixed SM lepton flavors. The red band represents electron (e), the blue band represents the muon

(µ) and the green band represents the tau (⌧). In this case we consider O = 13⇥3 as a identity

matrix. The same nature will be obtained from case when O is a real orthogonal matrix. We fix

the triplet mass M = 1 TeV. The shaded region in gray is ruled out by the PLANCK data. We

consider M = 1 TeV.

seesaw mechanism has been extensively studied utilizing the general parametrization under

the Casas-Ibarra conjecture in [84–93] and following that to study the vacuum stability in

type-III seesaw with two generations of the triplet fermions using the Casas-Ibarra conjecture

has been studied in [44], however, in our analysis we study three degenerate triplets under

the constraints obtained from the indirect searches.

We have three di↵erent choices for the orthogonal matrix in Eq. 21 as follows:

(i) O is a identity matrix, O = 13⇥3. In this case Eq. 20 will be

MNH/IH

D
= V ⇤

PMNS

p
DNH/IH

p

M. (24)

This will further a↵ect the light-heavy mixing. In this case there is no dependence on

x, y, z.

(ii) O is a real orthogonal matrix with diagonal and o↵-diagonal entries, (x, y, z) are real

and vary between [�⇡, ⇡]

(iii) O is a complex orthogonal matrix where x, y, z are the complex numbers, i. e., xi+iyi

and �⇡  xi, yi  ⇡

11
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For the cases (i) and (ii) using the two hierarchies of the neutrino masses (NH and IH) we

calculate the modulus square of the mixing between a triplet and the corresponding lepton

flavors. Then fixing the lepton flavor and we sum over the triplets. Therefore by definition

⌃i|V`⌃i |
2 = |V`⌃1

|
2 + |V`⌃2

|
2 + |V`⌃3

|
2 (25)

where ` = e, µ and ⌧ . Note that
P

i
|V`⌃i |

2 is same if O is identity or real orthogonal mass

matrix. For both of these cases, ⌃|V`⌃i |
2 have been plotted as a function of the lightest light

neutrino mass eigenvalue in Fig. 4. The NH (IH) case is shown in the left (right) panel as a

function of m1 (m3) where the electron flavor is presented by the red band and the muon and

tau flavors are represented by the blue and green bands. In the NH (IH) case the bounds on

the electron flavor (muon and tau flavors) are stronger for the decreasing m1 (m3). In this

analysis we fix the triplet mass M = 1 TeV.

We also plot the individual mixing as a function of the m1(m3) for the NH (IH) case in

the top (bottom) panel of the Fig. 5 for case (i). We find that |V`⌃1
|
2 for electron (red),

muon (blue) and tau (green) in the NH case are related to m1, lower the value of m1 lowers

the individual mixing in the NH case whereas in the IH case the mixings are parallel to the

horizontal axis below the PLANCK limit. In both of the cases the |Ve⌃1
|
2 is less stronger

than the other mixings. The mixings for other two flavors overlap with each other. The

nature of the |V`⌃2
|
2 is same for the three flavors of the leptons in both of the NH and IH

cases, where all flavors overlap with each other. On the other hand for |V`⌃3
|
2 the mixing

with the electron flavor is stronger than those with the other two flavors whereas |Vµ⌃3
|
2

and |V⌧⌃3
|
2 overlap with each other in both of the NH and IH cases, however, in the NH

case all three mixings are parallel to the horizontal axis below the PLANCK limit. On the

other hand in the IH case mixing decreases with the decrease in m3.

In the following we write down the individual mixings between the ⌃1 and the three

generations of the leptons for the case of O = 13⇥3:

|Ve⌃1
|
2 = m1

c2
12
c2
13

M

|Vµ⌃1
|
2 = m1

|c12s12 + c12ei�CPs13s23|2

M

|V⌧⌃1
|
2 = m1

|c12c23ei�CPs13 � s12s23|2

M
. (26)

We write down the individual mixings between the ⌃2 and the three generations of the

12

NH IH

Limits on the mixing Das, Mandal; will appear soon

Arindam Das, 

 Sanjoy Mandal



FIG. 15. Proper decay length of ⌃0

i
(⌃±

i
) for O = 13⇥3 with respect to the lightest neutrino mass

in the upper (lower) panel. We show the NH (IH) case in the left (right) panel using the neutrino

oscillation data in Eq. 16. The first generation triplet is represented by the red band, the second

generation is represented by blue band and the third generation is represented by green band

respectively. We consider M = 1 TeV. The shaded region is excluded by the PLANCK data.

can be noted from the benchmarks in the third or fourth row of Tab. III.

Decay Length [mm] mlightest = 10�6 eV mlightest = 10�10 eV

L
⌃

0

1

(NH)
⇥
134.13, 171.03

⇤ ⇥
1.35⇥ 106, 1.74⇥ 106

⇤

L
⌃

0

3

(IH)
⇥
129.04, 183.71

⇤ ⇥
1.28⇥ 106, 1.83⇥ 106

⇤

L
⌃

±
1

(NH)
⇥
20.29, 20.99

⇤ ⇥
23.9321, 23.9322

⇤

L
⌃

±
3

(IH)
⇥
20.18, 21.17

⇤ ⇥
23.9321, 23.9322

⇤

TABLE III. Benchmark for the proper decay lengths of ⌃0,±
1

(⌃0,±
3

) for the NH and IH cases fitting

the neutrino oscillation data in Eq. 16 when O = 13⇥3. The variation of the proper decay length

represents a band due 3� variation of the oscillation data. We consider M = 1 TeV.

Similarly we consider the case when O is a real orthogonal matrix. In this case the

analytical form for mixings are given in Eq. 29-31. We notice that now |V`⌃1
|
2 depends on
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We study the models with the heavy fermions under the 
simple extensions of the SM where the neutrino mass is 
generated by the seesaw mechanism to reproduce the 
neutrino oscillation data. 

Conclusions

We find that such heavy fermions can be tested at the 
underground experiments such as Large Hadron Collider and 
International Linear Collider. The interesting fact is such 
scenarios can be tested by the displaced vertex searches. We 
have calculated the total proper decay lengths of the and found 
that could be probed at the high energy collider experiments.

Thank You


