Status of the neutron veto system of XENONnT Bui T. Khai*, on behalf of XENON Collaboration *The University of Tokyo, Kavli IPMU tuankhai.bui@ipmu.jp

The XENONnT experiment

- Location: Hall-B, LNGS, 3600 m.w.e underground
- Time Projection Chamber filled with liquid xenon (LXe)
- Upgrade from XENON1T (1 ton-year exposure)
- \Rightarrow **20 ton**·year exposure operating in next **5 years**
- Main target: WIMP (and $0\nu\beta\beta$ of ¹³⁶Xe, 2ν ECEC of ¹²⁴Xe, ...)
- **WIMP** signature: \Rightarrow **N**uclear **R**ecoil (NR)

Neutron Veto (nVeto) technique

- LZ: "traditional" Gd-loaded liquid scintillator

 \Rightarrow At LNGS: • liquid scintillator: NO \bigotimes

- Water Cherenkov is accepted 🙂
- Apply Gd-loaded water Cherenkov technology of Super-K and EGADS
- \Rightarrow Super-K: neutrino study
- \Rightarrow XENONnT: first application of this

technology in DM direct detection

Neutrons are captured by Gd, the largest cross-section for the thermal neutron capture. \Rightarrow A cascade of γ -rays with a total energy of 8 MeV. \Rightarrow Effectively tag neutron events

scattering from TPC

nVETO Top View 00000 000000 +000C

AmBe source response with pure water

Event area [PE]

2.2 MeV: n-capture on H

nVeto system in XENONnT

- Located inside the water tank, around the cryostat
- Octagonal structure made of SS AISI304 (~700kg)
- Reflective foil: high PMT coverage & light

collection efficiency

Interactive neutron-veto event display

 10^{2}

 10^{0}

 $\underset{0}{\operatorname{Residuals}}$

Rate per bin [Hz]

Event distribution during AmBe calibration

4.4 MeV: Be(α ,n)¹²C

120

100

120 PMTs 8" Hamamatsu R5912-100 HQE (~40%):

detect Cherenkov radiations

- DAQ: CAEN V1730 digitizers 500MHz 14 bits
- Neutron tagging efficiency (10-fold coincidence):

 \circ Pure water: 65% (from simulation)

- 0.2% Gd in water: 85% (near future)
- Will dissolve: 3.4 t of $Gd_2(SO4)_3 \cdot 8H_2O$
- \Rightarrow Need GdWPS to keep good water quality and

maintain the Gd concentration (ready soon...)