Background analysis of Nal(TI) crystals for the PICOLON detector.

K.Kotera, D.Chernyak^A, H.Ejiri^B, K.Fushimi, K.Hata^C, R.Hazama^D, T.Iida^E, H.Ikeda^C, K.Imagawa^F, K.Inoue^C, H.Ito^G, T.Kishimoto^H, M.Koga^C, A.Kozlov^I, K.Nakamura^{J,K}, R.Orito, T.Shima^B, Y.Takemoto^{G,K}, S.Umehara^B, Y.Urano, K.Yasuda^F, S.Yoshida^H

Tokushima Univ, Univ. of Alabama^A, RCNP Osaka Univ.^B, RCNS Tohoku Univ.^C, Osaka Sangyo Univ.^P, ICRR Univ. Tokyo^G, Dept. Sci. Osaka Univ.^H, MEPhl^I, Osaka Butsuryo Univ.^J, Kavli IPMU Univ. Tokyo^K

PICOLON Project

PICOLON Project

Status

(Pure Inorganic Crystal Observatory for Low-energy Neut(ra)lino)

We search for dark matter(WIMP) using high-purity NaI(TI) detector and verify the annual modulation reported by the DAMA/LIBRA group. [1]

Ingot # 85 (2021) crystal was purified by optimized method. [2] We verified the purification method. →Ingot #94 was produced!

> Reference [1] NUCL. PHYS. AT. ENERGY 19 (2018) 307-325 [2] K.Fushimi et al. PTEP 2021 043F01

Experimental Setup

Ingot#85 & Ingot#94 \rightarrow These detectors were installed each shield.

Result

α -ray result

Faint but clear 5 peaks.

	RIs	Energy Range [keV _{ee}]	Events
А	²³⁸ U(U) + ²³² Th(Th)	2210-2900	33 ± 6
В	²³⁴ U(U) + ²³⁰ Th(Th) + ²²⁶ Ra(U)	2950-3350	72 ± 9
С	²²⁸ Th(Th) + ²²⁴ Rn*(U) + ²¹⁰ Po(U)	3380-3970	118 ± 11
D	²¹⁸ Po(U) + ²¹² Bi(Th) + ²²⁴ Rn*(U) + ²²⁰ Rn(Th)	4000-4480	71 ± 9
E	²¹⁶ Po(Th)	4690-5150	15 ± 4

Ingot#94 (crystal) Detector(#94)

Both signals of two detectors make a DAQ trigger.

Shield (# 85)

Data Analysis

 α -ray concentration: Pulse Shape Discrimination (PSD) α -ray & β , γ -rays events: $\tau_{\alpha} \sim 190 \text{ ns}, \tau_{\beta,\gamma} \sim 230 \text{ ns}$

Waveform (α and β , γ event) 250 α-ray Part

Discussion

We have achieved our goal of high purity Nal(TI).

 \Rightarrow We have confirmed the reproducibility of the purification method.

		DAMA/LIBRA (NIM A592 (2008) 297.)	Ingot (202	# 85 20)	Ingot (This	: #94 work)					
	Crystal size	$10.2 \times 10.2 \times 25.4$ c	m ³ 7	$7.62\phi imes 7.62 \ { m cm}^3$							
	²³² Th [µBq/kg]	2~31	0.3 <u>+</u>	0.5	4.6 ±	: 1.2					
	²²⁶ Ra [µBq/kg]	8.7~124	1.0 ± 0.4		8.7 <u>+</u>	± 1.5					
	²¹⁰ Po [µBq/kg]	5~30	< 5	.7	28 -	<u>+</u> 5					
E	BG Rate: ~2 Events/(day \cdot kg \cdot keV _{ee}).										
Prospect											
Further reduction of backgrounds !!											
•	Need to remove r	noise below 3 keV _{ee}	Cu PMT		(LiMade of acr Cu plate	ylic				
 Noise reduction using machine learning. 				LS Na	I(TI) LS	Shielding					
	(Most likely an	event from PMT).		Lumi	nous⇒Event discrimin	ation					
	 Background events are reduced by active shields with detector. 										