Data analysis for reduction of ${ }^{208} \mathrm{Tl}$ background events in CANDLES system Go Miyoshi for CANDLES Collaboration

 Osaka Univ.
1.Introduction

It has been more than 60 years since neutrinos were discovered. However, the origin of the masses of neutrinos is yet unknown. One of the promising scenarios is that neutrinos have Majorana masses. Observation of neutrino-less double-beta decay ($0 v \beta \beta$) is a powerful method for validating the scenario. If $0 v \beta \beta$ decay is observed, it will not only promote better our understanding of neutrinos but will also play major role as a key to solve the mystery of why the current universe is composed entirely of matter.

2.Experimental set up

CANDLES system is installed in the Kamioka underground laboratory. We can reduce backgrounds from outside with various shields.
\rightarrow Originate from ${ }^{232} \mathrm{Th}$ impurities within CaF_{2} crystal.

3.Reduction of background events

The remaining background is ${ }^{208} \mathrm{Tl}$ decay events in the CaF_{2} crystals, which is above Q-value of $O v \beta \beta$ decay of ${ }^{48} \mathrm{Ca}$. In addition, y rays from ${ }^{208}$ TI decay can drop energy in neighboring crystals (Multi-hit). We want to remove these backgrounds to realize purer measurements.

Single-hit ~78\% prompt α-decay	Multi-hit ~22\% prompt α-decay CaF_{2} crystal CaF_{2} crystal
[Diagrams of ${ }^{208}$ T In previous analysis, background of single events. However, the hit events for simula ignored.	e reduce ${ }^{208} \mathrm{Tl}$ rystal hit (Single-hit) are also 22\% multi n, which can't be

[Backgrounds simulation] Reference : Phys. Lett. D 103,092008 (2021)

4.Analysis method

To reduce the ${ }^{208} \mathrm{Tl}$ background including multi-crystal hit(Multi-hit) events, we need to reproduce the energy spectrum and position distribution data of ${ }^{208} \mathrm{TI}$ decay with Monte Carlo simulations. For that, we have to know the position resolution. We use sequential α-decays (${ }^{220} \mathrm{Rn}->{ }^{216} \mathrm{Po}\left[\mathrm{T}_{1 / 2}=145 \mathrm{~ms}\right]->{ }^{212} \mathrm{~Pb}$) of ${ }^{220} \mathrm{Rn}$ in the CaF_{2} crystals to get it.
[${ }^{220} \mathrm{Rn}$ sequential α-decays]
Prompt and delayed α-decays always occur at the same location in the CaF_{2} crystals.
(1)Get position resolution except the crystal size from position difference between prompt and delayed
(2)Get observed crystal size data from fitting by using (1)position resolution
(3)Get the number of photoelectron (NPE) distribution (Single-hit)
(4) Get the fluctuation of NPE in each PMT
(5) Estimate the position resolution following the right diagram

Diagram for estimation of position resolution

5.Results

The following figures show the NPE distribution and its fluctuations in the analysis of ${ }^{220} \mathrm{Rn}$ decay.

The fluctuations in average NPE

6.Summary

- I clarified the correspondence between NPE and its fluctuation in CANDLES.
- I obtained the position resolution by using ${ }^{220} \mathrm{Rn}$ sequential α-decays.
The above contents obtained by the present analysis enable accurate estimation of position.
(Let you know the pulse shape discrimination analysis, please look at Yoshioka's poster.)

[Future plan]

In order to further reduce ${ }^{208} \mathrm{~T}$ I background, I incorporate this NPE distribution and position information into Monte Carlo simulation and reproduce the energy spectrum and position distribution of ${ }^{208} \mathrm{TI}$ decays.

